Какой принцип индикации используется в жк экранах. Смотреть что такое "ЖКИ" в других словарях

Телефоны, плееры , термометры и пр.) могут иметь монохромный или 2-5 цветный дисплей . Многоцветное изображение формируется с помощью 2008) в большинстве настольных мониторов на основе TN- (и некоторых *VA) матриц, а также во всех дисплеях ноутбуков используются матрицы с 18-битным цветом (6 бит на канал), 24-битность эмулируется мерцанием с дизерингом .

Устройство ЖК-монитора

Субпиксел цветного ЖК-дисплея

Каждый пиксел ЖК-дисплея состоит из слоя молекул между двумя прозрачными электродами , и двух поляризационных фильтров , плоскости поляризации которых (как правило) перпендикулярны. В отсутствие жидких кристаллов свет, пропускаемый первым фильтром, практически полностью блокируется вторым.

Поверхность электродов, контактирующая с жидкими кристаллами, специально обработана для изначальной ориентации молекул в одном направлении. В TN-матрице эти направления взаимно перпендикулярны , поэтому молекулы в отсутствие напряжения выстраиваются в винтовую структуру. Эта структура преломляет свет таким образом, что до второго фильтра плоскость его поляризации поворачивается, и через него свет проходит уже без потерь. Если не считать поглощения первым фильтром половины неполяризованного света - ячейку можно считать прозрачной. Если же к электродам приложено напряжение - молекулы стремятся выстроиться в направлении поля , что искажает винтовую структуру. При этом силы упругости противодействуют этому, и при отключении напряжения молекулы возвращаются в исходное положение. При достаточной величине поля практически все молекулы становятся параллельны, что приводит к непрозрачности структуры. Варьируя напряжение , можно управлять степенью прозрачности. Если постоянное напряжение приложено в течении долгого времени - жидкокристаллическая структура может деградировать из-за миграции ионов. Для решения этой проблемы применяется переменный ток , или изменение полярности поля при каждой адресации ячейки (непрозрачность структуры не зависит от полярности поля). Во всей матрице можно управлять каждой из ячеек индивидуально, но при увеличении их количества это становится трудновыполнимо, так как растёт число требуемых электродов. Поэтому практически везде применяется адресация по строкам и столбцам. Проходящий через ячейки свет может быть естественным - отражённым от подложки(в ЖК-дисплеях без подсветки). Но чаще применяют , кроме независимости от внешнего освещения это также стабилизирует свойства полученного изображения. Таким образом полноценный ЖК-монитор состоит из электроники, обрабатывающей входной видеосигнал, ЖК-матрицы, модуля подсветки, блока питания и корпуса. Именно совокупность этих составляющих определяет свойства монитора в целом, хотя некоторые характеристики важнее других.

Технические характеристики ЖК-монитора

Важнейшие характеристики ЖК-мониторов:

  • Разрешение : Горизонтальный и вертикальный размеры, выраженные в пикселах . В отличие от ЭЛТ-мониторов, ЖК имеют одно, «родное», физическое разрешение, остальные достигаются интерполяцией .

Фрагмент матрицы ЖК монитора (0,78х0,78 мм), увеличеный в 46 раз.

  • Размер точки: расстояние между центрами соседних пикселов. Непосредственно связан с физическим разрешением.
  • Соотношение сторон экрана (формат): Отношение ширины к высоте, например: 5:4, 4:3, 5:3, 8:5, 16:9, 16:10.
  • Видимая диагональ: размер самой панели, измеренный по диагонали. Площадь дисплеев зависит также от формата: монитор с форматом 4:3 имеет большую площадь, чем с форматом 16:9 при одинаковой диагонали.
  • Контрастность : отношение яркостей самой светлой и самой тёмной точек. В некоторых мониторах используется адаптивный уровень подсветки с использованием дополнительных ламп, приведенная для них цифра контрастности (так называемая динамическая) не относится к статическому изображению.
  • Яркость : количество света, излучаемое дисплеем, обычно измеряется в канделах на квадратный метр.
  • Время отклика : минимальное время, необходимое пикселу для изменения своей яркости. Методы измерения неоднозначны.
  • Угол обзора: угол, при котором падение контраста достигает заданного, для разных типов матриц и разными производителями вычисляется по-разному, и часто не подлежит сравнению.
  • Тип матрицы: технология, по которой изготовлен ЖК-дисплей.
  • Входы: (напр, DVI , HDMI и пр.).

Технологии

Часы с ЖКИ-дисплеем

Жидкокристаллические мониторы были разработаны в 1963 году в исследовательском центре Давида Сарнова (David Sarnoff) компании RCA, Принстон, штат Нью-Джерси.

Основные технологии при изготовлении ЖК дисплеев: TN+film, IPS и MVA. Различаются эти технологии геометрией поверхностей, полимера, управляющей пластины и фронтального электрода . Большое значение имеют чистота и тип полимера со свойствами жидких кристаллов, примененный в конкретных разработках.

Время отклика ЖК мониторов, сконструированных по технологии SXRD (англ. Silicon X-tal Reflective Display - кремниевая отражающая жидкокристаллическая матрица), уменьшено до 5 мс. Компании Sony, Sharp и Philips совместно разработали технологию PALC (англ. Plasma Addressed Liquid Crystal - плазменное управление жидкими кристаллами), которая соединила в себе преимущества LCD (яркость и сочность цветов, контрастность) и плазменных панелей (большие углы видимости по горизонту, H, и вертикали, V, высокую скорость обновления). В качестве регулятора яркости в этих дисплеях используются газоразрядные плазменные ячейки, а для цветовой фильтрации применяется ЖК-матрица. Технология PALC позволяет адресовать каждый пиксель дисплея по отдельности, а это означает непревзойденную управляемость и качество изображения.

TN+film (Twisted Nematic + film)

Часть «film» в названии технологии означает дополнительный слой, применяемый для увеличения угла обзора (ориентировочно - от 90° до 150°). В настоящее время приставку «film» часто опускают, называя такие матрицы просто TN. К сожалению, способа улучшения контрастности и времени отклика для панелей TN пока не нашли, причём время отклика у данного типа матриц является на настоящий момент одним из лучших, а вот уровень контрастности - нет.

TN + film - самая простая технология.

Матрица TN + film работает следующим образом: если к субпикселам не прилагается напряжение, жидкие кристаллы (и поляризованный свет, который они пропускают) поворачиваются друг относительно друга на 90° в горизонтальной плоскости в пространстве между двумя пластинами. И так как направление поляризации фильтра на второй пластине составляет угол в 90° с направлением поляризации фильтра на первой пластине, свет проходит через него. Если красные, зеленые и синие субпиксели полностью освещены, на экране образуется белая точка.

К достоинствам технологии можно отнести самое маленькое время отклика среди современных матриц, а также невысокую себестоимость.

IPS (In-Plane Switching)

Технология In-Plane Switching была разработана компаниями Hitachi и NEC и предназначалась для избавления от недостатков TN + film. Однако, хотя с помощью IPS удалось добиться увеличения угла обзора до 170°, а также высокой контрастности и цветопередачи, время отклика осталось на низком уровне.

На настоящий момент матрицы, изготовленные по технологии IPS единственные из ЖК-мониторов, всегда передающие полную глубину цвета RGB - 24 бита, по 8 бит на канал. TN-матрицы почти всегда имеют 6-бит, как и часть MVA.

Если к матрице IPS не приложено напряжение, молекулы жидких кристаллов не поворачиваются. Второй фильтр всегда повернут перпендикулярно первому, и свет через него не проходит. Поэтому отображение черного цвета близко к идеалу. При выходе из строя транзистора «битый» пиксель для панели IPS будет не белым, как для матрицы TN, а черным.

При приложении напряжения молекулы жидких кристаллов поворачиваются перпендикулярно своему начальному положению и пропускают свет.

IPS в настоящее время вытеснено технологией S-IPS (Super-IPS, Hitachi год), которая наследует все преимущества технологии IPS с одновременным уменьшением времени отклика . Но, несмотря на то, что цветность S-IPS панелей приблизилась к обычным мониторам CRT , контрастность все равно остаётся слабым местом. S-IPS активно используется в панелях размером от 20", LG.Philips , NEC остаются единственными производителями панелей по данной технологии.

AS-IPS - технология Advanced Super IPS (Расширенная Супер-IPS), также была разработана корпорацией Hitachi в году. В основном улучшения касались уровня контрастности обычных панелей S-IPS, приблизив его к контрастности S-PVA панелей. AS-IPS также используется в качестве названия для мониторов корпорации LG.Philips.

A-TW-IPS - Advanced True White IPS (Расширенная IPS с настоящим белым), разработано LG.Philips для корпорации году. Усиленная мощность электрического поля позволила добиться ещё больших углов обзора и яркости, а также уменьшить межпиксельное расстояние. Дисплеи на основе AFFS в основном применяются в планшетных ПК , на матрицах производства Hitachi Displays.

*VA (Vertical Alignment)

MVA - Multi-domain Vertical Alignment. Эта технология разработана компанией Fujitsu как компромисс между TN и IPS технологиями. Горизонтальные и вертикальные углы обзора для матриц MVA составляют 160°(на современных моделях мониторов до 176-178 градусов), при этом благодаря использованию технологий ускорения (RTC) эти матрицы не сильно отстают от TN+Film по времени отклика, но значительно превышают характеристики последних по глубине цветов и точности их воспроизведения.

MVA стала наследницей технологии VA, представленной в 1996 году компанией Fujitsu. Жидкие кристаллы матрицы VA при выключенном напряжении выровнены перпендикулярно по отношению ко второму фильтру, то есть не пропускают свет. При приложении напряжения кристаллы поворачиваются на 90°, и на экране появляется светлая точка. Как и в IPS-матрицах, пиксели при отсутствии напряжения не пропускают свет, поэтому при выходе из строя видны как чёрные точки.

Достоинствами технологии MVA являются глубокий черный цвет и отсутствие, как винтовой структуры кристаллов, так и двойного магнитного поля.

Недостатки MVA в сравнении с S-IPS: пропадание деталей в тенях при перпендикулярном взгляде, зависимость цветового баланса изображения от угла зрения, большее время отклика.

Аналогами MVA являются технологии:

  • PVA (Patterned Vertical Alignment ) от Samsung.
  • Super PVA от Samsung.
  • Super MVA от CMO.

Матрицы MVA/PVA считаются компромиссом между TN и IPS, как по стоимости, так и по потребительским качествам.

Преимущества и недостатки

Искажение изображения на ЖК-мониторе при большом угле обзора

Макрофотография типичной жк-матрицы. В центре можно увидеть два дефектных субпикселя (зелёный и синий).

В настоящее время ЖК-мониторы являются основным, бурно развивающимся направлением в технологии мониторов. К их преимуществам можно отнести: малый размер и вес в сравнении с ЭЛТ . У ЖК-мониторов, в отличие от ЭЛТ , нет видимого мерцания, дефектов фокусировки и сведения лучей, помех от магнитных полей, проблем с геометрией изображения и четкостью. Энергопотребление ЖК-мониторов в 2-4 раза меньше, чем у ЭЛТ и плазменных экранов сравнимых размеров. Энергопотребление ЖК мониторов на 95 % определяется мощностью ламп подсветки или светодиодной матрицы подсветки (англ. backlight - задний свет) ЖК-матрицы. Во многих современных (2007) мониторах для настройки пользователем яркости свечения экрана используется широтно-импульсная модуляция ламп подсветки частотой от 150 до 400 и более Герц . Светодиодная подсветка в основном используется в небольших дисплеях, хотя в последние годы она все шире применяется в ноутбуках и даже в настольных мониторах. Несмотря на технические трудности её реализации, она имеет и очевидные преимущества перед флуоресцентными лампами, например более широкий спектр излучения, а значит, и цветовой охват.

С другой стороны, ЖК-мониторы имеют и некоторые недостатки, часто принципиально трудноустранимые, например:

  • В отличие от ЭЛТ, могут отображать чёткое изображение лишь в одном («штатном») разрешении. Остальные достигаются интерполяцией с потерей чёткости. Причем слишком низкие разрешения (например 320x200) вообще не могут быть отображены на многих мониторах.
  • Цветовой охват и точность цветопередачи ниже, чем у плазменных панелей и ЭЛТ соответственно. На многих мониторах есть неустранимая неравномерность передачи яркости (полосы в градиентах).
  • Многие из ЖК-мониторов имеют сравнительно малый контраст и глубину чёрного цвета. Повышение фактического контраста часто связано с простым усилением яркости подсветки, вплоть до некомфортных значений. Широко применяемое глянцевое покрытие матрицы влияет лишь на субъективную контрастность в условиях внешнего освещения.
  • Из-за жёстких требований к постоянной толщине матриц существует проблема неравномерности однородного цвета (неравномерность подсветки).
  • Фактическая скорость смены изображения также остаётся ниже, чем у ЭЛТ и плазменных дисплеев . Технология overdrive решает проблему скорости лишь частично.
  • Зависимость контраста от угла обзора до сих пор остаётся существенным минусом технологии.
  • Массово производимые ЖК-мониторы более уязвимы, чем ЭЛТ. Особенно чувствительна матрица, незащищённая стеклом. При сильном нажатии возможна необратимая деградация. Также существует проблема дефектных пикселей .
  • Вопреки расхожему мнению пикселы ЖК-мониторов деградируют, хотя скорость деградации наименьшая из всех технологий отображения.

Перспективной технологией, которая может заменить ЖК-мониторы, часто считают OLED -дисплеи. С другой стороны, эта технология встретила сложности в массовом производстве, особенно для матриц с большой диагональю.

См. также

  • Видимая область экрана
  • Антибликовое покрытие
  • en:Backlight

Ссылки

  • Информация о флюоресцентных лампах, используемых для подсветки ЖК-матрицы
  • Жидкокристаллические дисплеи (технологии TN + film, IPS, MVA, PVA)

Литература

  • Артамонов О. Параметры современных ЖК-мониторов
  • Мухин И. А. Как выбрать ЖК-монитор? . «Компьютер-бизнес-маркет», № 4 (292), январь 2005, стр. 284-291.
  • Мухин И. А. Развитие жидкокристаллических мониторов . «BROADCASTING Телевидение и радиовещение»: 1 часть - № 2(46) март 2005, с.55-56; 2 часть - № 4(48) июнь-июль 2005, с.71-73.
  • Мухин И. А. Современные плоскопанельные отображающие устройства ."BROADCASTING Телевидение и радиовещение": № 1(37), январь-февраль 2004, с.43-47.
  • Мухин И. А., Украинский О. В. Способы улучшения качества телевизионного изображения, воспроизводимого жидкокристаллическими панелями . Материалы доклада на научно-технической конференции «Современное телевидение», Москва, март 2006.

В настоящее время наблюдается значительный подъем производства радиоэлектронной аппаратуры в России. На рынке появилось разнообразное оборудование для автоматизированной сборки плат как отечественного, так и зарубежного производства. Технология же производства жидкокристаллических индикаторов (ЖКИ) на сегодняшний день в России трудно осуществима по двум причинам. Во-первых, необходимо устанавливать управляющие кристаллы на плату по технологии кристалл на плату (COB). Во-вторых, отсутствуют доступные кристаллы российского производства. Компания МЭЛТ уже более двух лет занимается решением этих задач. Разработаны и серийно производятся управляющие кристаллы для различных вариантов жидкокристаллических модулей. Запущена собственная линия сборки методом COB. Качество производства модулей обеспечивается современным технологическим оборудованием и применением новейших разработок компании МЭЛТ.

Конструкция ЖКИ

Компания МЭЛТ производит ЖКИ по стандартной конструкции, завоевавшей популярность во всем мире: жесткое основание модуля в виде печатной платы с установленной на ней М/С контроллера по технологии COB. Металлическая рамка фиксирует ЖК-панель и прижимает токопроводящую резину к плате и стеклу. Одним из несомненных преимуществ данной конструкции является возможность восстанавливать работоспособность модулей путем несложной замены платы или ЖК-панели.

Технология Chip On Board (СОВ)

Известны два варианта установки микросхем на плату. Первый - кристалл упаковывается в пластмассовый корпус с гибкими или жесткими выводами, которые припаиваются к плате. Преимущества этого способа: ремонтопригодность, простота установки, а существенный недостаток - высокая цена. Стоимость корпуса кристалла сравнима со стоимостью платы, на которую он впоследствии будет устанавливаться, поэтому есть смысл устанавливать кристалл непосредственно на плату. В этом случае при выходе из строя кристалла плату попросту заменяют новой. Сборка индикаторов по технологии Chip On Board гарантирует получение достаточно конкурентоспособной продукции, полностью соответствующей международным требованиям качества.

Температурный диапазон

Температурный диапазон ЖКИ определяют физико-химические свойства ЖК-панели. При понижении температуры увеличивается время переключения ЖК-панели, что делает трудноосуществимой динамическую индикацию. Дальнейшее понижение температуры приводит к разрушению ЖК-панели. Таким образом, если выключено питание прибора, где установлен ЖКИ с подогревом, то при низкой температуре работоспособность модуля утрачена. Для решения этой проблемы компания МЭЛТ выпускает ЖКИ двух температурных диапазонов: обычного (0...50 °С) и расширенного (–30...70 °С).

Тип ЖК-панели ЖКИ

Компания МЭЛТ выпускает ЖКИ с ЖК-панелями двух видов: Reflective - работает на отражение светового потока и Transflective - на просвет (рис. 1). Стекла типа Transflective бывают двух типов: positive и negative. Рositive представляет собой прозрачный фон, на котором при подаче соответствующих сигналов становятся непрозрачными определенные участки. Negative представляет собой непрозрачный фон, на котором становятся прозрачными соответствующие участки.

ЖКИ с ЖК-панелями Transflective дороже, поскольку в них применяется дополнительный элемент подсветки. Их рекомендуется использовать в конструкциях, которые эксплуатируются при любых условиях освещения.

Тип подсветки

В ЖКИ, выпускаемых компанией МЭЛТ, применяют светодиодную (LED) и люминесцентную (EL) подсветки. LED-подсветка отличается долговечностью (20 000–100 000 часов), не требует дополнительного источника питания, однако у нее достаточно высокий ток потребления (от 10 до 100 мА) и большие габаритные размеры (высота индикатора увеличивается в среднем на 3–5 мм). EL-подсветка отличается весьма низким током потребления при повышенной светоотдаче и малыми габаритами, но этот тип подсветки требует дополнительного источника питания (100 В), а срок службы составляет 2000–5000 часов. В настоящее время ЖКИ с EL-подсветкой находятся в стадии подготовки к производству.

Напряжение питания ЖКИ

Один из наиболее привлекательных моментов для разработчика - широкий диапазон питающих напряжений. Управляющая микросхема ЖКИ требует напряжения питания от 3 до 6 В. Однако для получения нормальной контрастности ЖК-панели на нее требуется подавать напряжение от 3 до 16 В в зависимости от температуры окружающей среды и типа самого стекла. Таким образом, если требуется ЖКИ с напряжением питания 3 В, то достаточно взять серийный модуль и в дополнение к нему собрать микромощный преобразователь напряжения, выход которого необходимо соединить со входом управления контрастностью ЖКИ (рис. 2). От выходного напряжения преобразователя в этом случае зависит контрастность ЖКИ. Если напряжение питания индикатора и ЖК-панели равны, то контрастность можно регулировать при помощи подстроечного резистора, включенного между входом V0 и GND ЖКИ. Контрастность ЖКИ зависит также и от рабочей температуры, поэтому для изделия, работающего в широком диапазоне температур, выходное напряжение преобразователя следует сделать термозависимым. Обратите внимание, что на ЖКИ любого типа недопустимо воздействие статического электричества выше 30 В.

Жидкокристаллический модуль МТ-10Т7-7

Жидкокристаллический модуль МТ-10Т7-7 является самым простым из выпускаемых компанией МЭЛТ ЖКИ. Этот модуль стал наиболее популярным при разработке простых конструкций в связи с невысокой ценой и очень удобным интерфейсом. Он собран на односторонней печатной плате с одним управляющим кристаллом. Все элементы модуля расположены между платой и стеклом, что позволило обеспечить наивысшее качество и надежность (рис. 3). Модуль может отображать десять знакомест, каждое знакоместо представляет собой восемь сегментов, расположенных в виде восьмерки с точкой (рис. 4). Любой сегмент любого знакоместа можно включать и выключать независимо от других сегментов, что позволяет обеспечить достаточно информативную индикацию в недорогих конструкциях. Структурная схема модуля МТ-10Т7-7 приведена на рис. 5. Память модуля состоит из десяти регистров, соответствующих каждому из десяти знакомест. Каждый регистр поделен на две тетрады, старшую (H) и младшую (L). Старшая тетрада соответствует сегментам h, b, c и f, младшая - g, e, d и a (рис. 4). Запись высокого уровня вызывает высвечивание соответствующего сегмента, запись низкого уровня - его погасание.

Описание интерфейса

Запись данных в любой из регистров индикатора производится следующим образом. На шине данных (DB0-DB3) выставляется адрес регистра. Сигнал адрес/данные (A0) необходимо установить в значение 0. Адрес в регистре DCA защелкнется при условии WR1 & ^WR2, то есть одновременного сочетания высокого уровня на выводе WR1 и низкого уровня на выводе WR2. Такое решение позволяет более гибко осуществлять функцию CS (выбор кристалла), когда на шине данных находится несколько различных устройств. Если в этом нет необходимости, то вывод WR2 можно замкнуть на GND, а сигнал CS подавать на вывод WR1. После того как адрес защелкнут в регистре DCA, следует подать данные. Для этого вывод A0 надо перевести в высокое состояние, на шине данных установить значение младшей тетрады данных и подать сигнал CS (см. выше). Далее на шину данных подать значение старшей тетрады данных и вновь подать сигнал CS. После записи второй тетрады содержимое адреса инкрементируется, и можно записывать данные в последующие регистры без предварительной записи адреса. По адресу 0Fh расположен триггер блокировки шины. Запись в него DB0 = «L» вызовет блокировку записи в модуль адресов и данных. Разблокировка шины производится записью DB0 = «H» по адресу 0Fh. Первой командой после подачи питания должна быть команда разблокировки шины, так как состояние регистров индикатора может быть любым.

Назначения выводов модуля приведены в табл. 1. Соответствие адресов регистров данных и номеров знакомест модуля - в табл. 2. Динамические характеристики модуля показаны на рис. 6 и в табл. 3. Электрические параметры по постоянному току приведены в табл. 4. Габаритные размеры модуля МТ-10Т7-7 указаны на рис. 7. Временные диаграммы записи данных в индикатор приведены на рис. 8. В настоящее время ЖКИ МТ-10Т7-7 производится серийно в стандартном температурном диапазоне со стеклом Reflective. Другие варианты исполнения ЖКИ производятся под заказ. Зарубежных аналогов у ЖКИ МТ-10Т7-7 нет.

Жидкокристаллические модули со встроенным знакогенератором

Общее описание

В настоящее время компания МЭЛТ серийно производит три типа жидкокристаллических модулей со встроенным знакогенератором: MT-10S1-2, MT-16S2-2Н, MT-16S2-2D (рис. 9–11). В процессе подготовки к производству находится ЖКИ МТ-16S2Q, который отличается от MT-16S2-2Н большим размером отображаемых символов. Контроллер управления ЖК-панелью аналогичен HD44780 фирмы Hitachi или KS0066 фирмы Samsung. Модули выпускаются со светодиодной подсветкой и без нее.

Модули МТ-16S2-2H и MT-16S2-2D позволяют отображать две строки по шестнадцать символов в каждой. Символы отображаются в матрице 5–8 точек и курсор. Интервалы между символами шириной в одну отображаемую точку. Эти модули являются полными аналогами ЖКИ производства POWERTIP, MICROTIPS, BOLYMIN и т. п.

MT-10S1-2 позволяет отображать 10 символов в одной строке при матрице символа 5–8 точек плюс курсор. Каждому отображаемому символу соответствует его код в ячейке памяти модуля. Модули содержат два вида памяти: кодов отображаемых символов и пользовательского знакогенератора, а также логику для управления ЖК-панелью. Габаритные размеры модулей (рис. 12–14).

Назначение выводов МТ-10S1-2, МТ-16S2-2Н и МТ-16S2-2D приведено в табл. 7.

ЖКИ со встроенным знакогенератором позволяют:

  • выводить на ЖК-панель изображения символов из встроенного знакогенератора;
  • запоминать до восьми изображений символов, задаваемых пользователем, а также выводить их;
  • выводить мигающий и немигающий курсор двух типов;
  • работать как по 8-, так и по 4-битной шине данных.

Временные диаграммы чтения и записи изображены на рис. 15. Динамические характеристики приведены в табл. 5. Характеристики модулей по постоянному току приведены в табл. 6.

Модули управляются по 4- или 8-битному интерфейсу. Разрядность интерфейса задается пользователем при помощи соответствующих команд (рис. 16). Указанное время выполнения команд является максимальным. Его нет необходимости выдерживать при условии чтения флага BS. Как только флаг BS равен 0, можно писать следующую команду или данные. Диаграмма обмена по 4-битному интерфейсу изображена на рис. 17, а по 8-битному - на рис. 18. При работе по 4-битному интерфейсу в каждом цикле необходимо передавать (читать или писать) все восемь бит. Передача старших четырех бит без последующей передачи младших четырех бит не допускается. Рекомендуемый алгоритм начальной установки модулей после подачи питания приведен на рис. 19.


Продолжение следует

В настоящее время широкое распространение получили жидкокристаллические индикаторы (ЖКИ). От светодиодных они отличаются тем, что не излучают свет, а лишь меняют коэффициент пропускания или поглощения света на определенных участках. При этом такие участки будут выглядеть темнее, либо светлее окружающих. Они могут быть выполнены в виде сегментов, либо точек.

ЖКИ формируют изображение лишь при наличии внешнего источника света, который может располагаться как перед индикатором, так и за ним.

Работа ЖКИ индикаторов основана на использовании специальных веществ, которые называются жидкими кристаллами. Их структура имеет свойства характерные как для жидкости (возможность перемещения молекул), так и для твердых тел – упорядоченность. Чаще всего для создания цифровых ЖКИ используются вещества, обладающие нематическими свойствами. Их молекулы представляют собой длинные нити, которые могут определенным образом ориентироваться. Такая ориентация в частности происходит под действием внешнего электрического поля.

В большинстве жидкокристаллических индикаторов используется эффект вращения плоскости поляризации. Свет представляет собой поток электромагнитного излучения, причем векторы электрического и магнитного полей могут в ходе распространения луча менять свое направление в пространстве (это характерно для неполяризованного света), а могут сохранять его (в этом случае свет считается поляризованным).

Свет от обычных источников (ламп накаливания, светодиодов, солнца и т. п.) неполяризован. Однако, пропуская световой поток через особым образом обработанные прозрачные пластинки (поляризаторы) со специальной структурой внешнего слоя, можно получить свет поляризованный в том или ином направлении.

Если два поляризатора расположить так, чтобы направления поляризации совпадали (рис. 3.17), то, пройдя через первый свет поляризуется, а так как направление поляризации у второй пластинки такое же, то он пройдет и через нее. Для наблюдателя такая структура будет прозрачной.

Если один из поляризаторов повернуть на 90 градусов (рис.3.18), то пройдя первый из них и получив вертикальное направление поляризации поток света не будет пропущен второй пластинкой (поглотится), так как направление ее поляризации горизонтально, а такой компоненты в дошедшем потоке нет. При освещении внешним источником данная структура будет казаться наблюдателю темной. Если первый поляризатор выполнить в виде набора участков в виде точек или полосок, направлением поляризации которых можно управлять независимо друг от друга, то удастся формировать различные знаки и символы. Однако такой способ управления на практике не используется, так как он требует механического воздействия на соответствующие элементы индикатора. В ЖКИ для изменения направления вектора поляризации применяются жидкие кристаллы.

Упрощенная структура ячейки жидкокристаллического индикатора приведена на рис. 3.19. Между двумя поляризаторами со скрещенными направлениями поляризации помещается тонкий слой жидкого кристалла нематической структуры, молекулы которого представляют собой длинные параллельные нити. Они располагаются вдоль осей поляризации на границах пластинок и плавно меняют свое направление в области между ними.

Если на такую структуру направить поток света, то после прохождения нижней пластинники он поляризуется и будет плавно менять направление поляризации по мере распространения к верхней, так как молекулы жидкого кристалла также выполняют роль поляризатора с изменяющимся в пространстве направлением. Поэтому до второй пластинки свет дойдет уже вертикально поляризованным и пройдет ее без поглощения. Для наблюдателя данная структура будет казаться прозрачной.

Если между пластинками поляризаторов приложить электрическое поле, то молекулы жидкого кристалла вытянутся вдоль него и дополнительного поворота плоскости поляризации света не произойдет. Световой поток будет поглощаться как в слое жидкого кристалла, так и вторым поляризатором. Так как в этом случае ячейка не пропускает свет, то она будет темной.

В жидкокристаллических индикаторах электрод заднего поляризатора делается сплошным, а электроды переднего выполняются в виде сегментов или точек. Они изготавливаются на основе токопроводящих окислов металлов, тонкие пленки которых прозрачны. Жидкие кристаллы являются диэлектриками, поэтому такой индикатор представляет собой аналог конденсатора и практически не потребляет тока от источника постоянного напряжения. Для управления им требуется очень маленькая мощность, составляющая единицы и доли микроватт на ячейку. Поэтому такие индикаторы находят широкое применение в автономных системах, питающихся от встроенных источников энергии.

Особенностью жидкокристаллической ячейки является относительно большое время реакции на воздействие электрического поля. Оно составляет десятки миллисекунд, в то время как светодиодные индикаторы являются практически безынерционными.

При использовании для управления индикатором постоянного напряжения долговечность его работы оказывается невысокой. Это связано с возникновением процессов электролиза жидкого кристалла и разрушением его структуры. Чтобы избежать данного эффекта для управления используют знакопеременное напряжение с частотой десятки герц. При этом молекулы жидкого кристалла будут периодически поворачиваться вслед за изменением направления поля, ячейка останется темной, но так как каждый из электродов попеременно будет выполнять роль анода и катода, то процессы электролиза не будут успевать развиваться. Вследствие того, что частоты управляющих сигналов низки, токи через соответствующие участки индикатора, представляющие собой конденсаторные структуры будут сравнимы с токам утечки.

Однако применение двуполярного напряжения в цифровых устройствах затруднено тем, что в этом случае потребуется второй источник питания и аналоговые управляющие схемы. Поэтому данная задача решается путем использования логических элементов, выполняющих операцию суммирования по модулю два, которые могут функционировать в качестве управляемого инвертора.

Если на один из входов такого элемента подать периодический сигнал с частотой, а на другой - информационный сигнал(рис. 3.20), то напряжение на его выходе будет совпадать с периодическим сигналом при нулевом значениии окажется в противофазе с ним при единичном значении (рис. 3.21).

При этом разность потенциалов между входом на который подается периодический сигнал и выходом будет равна нулю когда
и окажется знакопеременной в случае, если
.

Для управления ЖКИ его общий электрод подключается к источнику периодического сигнала, а сегмент к выходу соответствующего элемента исключающее ИЛИ. Схема управления семисегментным индикатором в статическом режиме работы приведена на рис.3.22.

В
следствие относительно большой инерционности жидкокристаллических индикаторов реализовать рассмотренные ранее динамические системы управления не представляется возможным. Однако путем усложнения структуры ЖКИ и использования многофазных сигналов были построены динамические системы управления индикаторами сегментного и матричного типов.

В настоящее время разработаны жидкокристаллические индикаторы, сохраняющие состояние ячеек и при отключении питания.

Жидкокристаллические индикаторы широко применяются в различных устройствах для отображения символьной и графической информации. На их основе разработаны LCD (liquid crystal display) жидкокристаллические панели, представляющие собой матрицу ячеек, с возможностью независимого управления каждой из них.

Различают несколько разновидности таких панелей, в частности с пассивной (TN) и активной (TFT) матрицами. Упрощенная структура первой из них приведена на рис. 3.23. Конструктивно такая матрица представляет собой систему из двух стеклянных пластин, между которыми размещается слой жидкокристаллического вещества, а на пластины наносятся взаимно-перпендикулярные прозрачные электроды, соединенные со схемами управления столбцами C и строками R. Ячейка матрицы располагается на пересечении строки и столбца. Ее эквивалентную схему можно представить в виде совокупности резистора, конденсатора и светопропускающего клапана.

П
ри отсутствии разности потенциалов на электродах ячейки матрицы прозрачны. На панель направляется свет от специального источника и в таком состоянии она выглядит как светящийся экран. Наличие между электродами соответствующих ячеек напряжения, превышающего определенный уровень, вызывает изменение положения молекул жидкого кристалла и эти ячейки перестают пропускать свет.

В местах их расположения появляются темные точки, из которых формируется изображение. Варьируя величину управляющего напряжения можно менять степень поворота молекул и коэффициент светопропускания ячейки, что позволяет воспроизводить градации яркости.

При формировании изображения осуществляется сканирование матрицы по строкам, для чего на каждую из них поочередно подается импульс напряжения отрицательной полярности U1. Одновременно на столбцы, связанные с ячейками, которые должны изменить свое состояние поступает положительный импульс с амплитудой U2. Это условно отображено на рис. 3.23 в виде знаков +,- и 0 для нулевого уровня управляющего сигнала.

При опросе первой строки и наличии положительного напряжения на столбцах С1 и С3 происходит перезаряд конденсаторов соответствующих ячеек (Я1, Я3) до некоторого положительного напряжения. К моменту окончания импульса опроса напряжение на ячейке Я2 из-за воздействия отрицательного потенциала строки станет отрицательным, а на Я4, вследствие положительного потенциала столбца С1 изменится в положительную сторону (рис.3.24).

В следующем такте сканирования, верхние обкладки конденсаторов ячеек Я1, Я3 окажутся соединенными с корпусом и к ним будет приложено суммарное напряжение величиной
. Это вызовет перевод ячеек в непрозрачное состояние и формирование темных участков в местах их расположения. На данном интервале времени разность потенциалов на электродах ячеек Я2, Я4 недостаточна для изменения их состояния. После окончания сканирования строкиR3 изменит свое состояние ячейка Я9 и т.д. Полярность напряжения на ячейках периодически меняет знак, что не дает развиваться процессам электролиза.

LCD панель с пассивной матрицей проста по конструкции, но обладает рядом существенных недостатков. Из-за небольшого времени воздействия на ячейку напряжения превышающего пороговое (заштрихованная область на рис. 3.24) необходимо использовать жидкокристаллические материалы со значительным временем релаксации, то есть перехода после возбуждения в первоначальное состояние. Это не позволяет отображать быстроменяющиеся сцены. Кроме того, наличие остаточного напряжения на ячейках приводит к невысокой контрастности изображения, определяемой отношением яркости полностью затемненной и прозрачной ячеек. Еще одним недостатком является наличие связи между ними, что вызывает смазывание динамически меняющихся изображений. В настоящее время такие панели практически полностью вытеснены активными с тонкопленочными управляющими полевыми транзисторами.

Структура активной TFT (thin film transistor) матрицы и упрощенные временные диаграммы ее работы приведены на рис. 3.25 и рис. 3.26. Здесь работой каждой ячейки управляет полевой транзистор, изготовленный по тонкопленочной технологии и размещенный на индикаторной панели. Затворы транзисторов соединяются со строками матрицы, а истоки со столбцами.

В

момент поступления положительного импульса на строку открываются транзисторы, связанные с ячейками данной строки. Конденсаторы тех ячеек, которые должны изменить свое состояние заряжаются под действием напряжения, подаваемого на соответствующие столбцы. При переходе к следующей строке, транзисторы предыдущей закрываются, а так как ячейка практически не потребляет тока, то ее состояние остается неизменным до следующего цикла сканирования, то есть в течение кадра.

Для того, чтобы предотвратить деградацию участков жидкого кристалла вследствие электролиза, напряжение на них должно периодически менять знак. С этой целью через кадр полярность импульсов, поступающих на столбцы меняется на противоположную.

В такой матрице ячейки (пиксели) оказываются электрически изолированными друг от друга, что обеспечивает хороший контраст изображения. Сохранение напряжения после снятия управляющего воздействия позволяет использовать жидкокристаллические вещества с малым временем релаксации. Это обеспечивает небольшое время отклика панели и возможность воспроизведения быстроменяющихся изображений.

В цветных LCD панелях каждый пиксель выполняется на основе трех независимо управляемых ячеек с соответствующими светофильтрами. При сложении красного, синего и зеленого цветов с различными интенсивностями формируются вся цветовая гамма в видимом диапазоне.

Н
овым направлением в системах отображения информации, работающих на отражение является использование так называемых электронных чернил. Базовыми элементами дисплеев на их основе являются микрокапсулы, внутри которых находятся окрашенные частицы двух цветов – белые, заряженные положительно и черные с отрицательным зарядом (рис. 3.27). Внутреннее пространство микрокапсулы заполнено прозрачной жидкостью.

Слои микрокапсул расположены между двумя рядами взаимно перпендикулярных электродов строк и столбцов, верхние из которых прозрачны. При подаче разности потенциалов на строку и столбец, в точке их пересечения возникает электрическое поле. Окрашенные частицы собираются у электрода с противоположным знаком потенциала. При этом соответствующая точки изображения (пиксел) окрасится в черный, либо в белый цвет, так как пигментные частицы, сгруппировавшиеся в верхней части микрокапсулы, скроют от наблюдателя нижний слой.

Дисплеи на базе электронных чернил, которые часто называются цифровой бумагой, способны сохранять изображения и при отсутствии питания, подача напряжения необходима лишь для изменения состояния пиксела. В качестве подложки используются: стекло, пластик, металлическая фольга и другие материалы. Такие устройства могут быть сделаны гибкими и имеют очень малую толщину.

В настоящее время недостатками устройств отображения на базе электронных чернил являются большое время переключения пиксела (0,5 – 1 сек.) и ограниченное количество воспроизводимых оттенков серого.

Контрольные вопросы.

    С какой целью последовательно со светодиодом при его подключении к источнику напряжения устанавливается резистор?

    Какова скважность восьмиразрядных систем динамической индикации, функционирующих по методу компарации и мультиплексирования?

    Сколько внешних выводов у светодиодной матрицы размером 5×7?

    В каком случае система скрещенных поляризаторов будет прозрачной – при наличии, либо при отсутствии жидкокристаллического вещества между ними?

    Чем обусловлена необходимость двуполярного напряжения для управления ЖКИ?

    Чем объясняется более высокая контрастность активной ЖКИ панели по сравнению с пассивной?

Индикаторы и дисплеи - это устройства отображения буквенно-цифровой информации, а так же, различной графической символики. Одним из типов информационных устройств является OLED индикатор, органический светодиодный дисплей. Группа представителей такого класса от компании Winstar

обладают высокой передачей цвета, малым энергопотреблением, высокой контрастностью и большим углом обзора 180°. Область применения цветных дисплеев - МР3 плееры, автомагнитолы, сотовые телефоны, цифровые фотоаппараты. ЖК-дисплеи - дисплеи на основе жидких кристаллов. TFT панели от компании NEC оснащены светодиодной подсветкой, высокой яркостью и контрастностью, минимальным временем отклика, большим углом обзора, просты в применении, обладают качеством и надежностью конструкции. ЖК-индикаторы графические являются устройствами вывода информации на жидкокристаллический дисплей (модуль). Линейка изделий производителей МЭЛТ и Winstar оснащены встроенными контроллерами с низким энергопотреблением, светодиодной подсветкой, малым напряжением питания, 3В…5В, что позволяет применять приборы в различной электронике с автономным питанием. При покупке следует учитывать габариты модуля, тип контроллера, количество строк и точек в строке, и напряжение питания.

Цифровые сегментные индикаторы предназначены для отображения вывода буквенно-цифровой информации в электронных приборах. Модели изделий известных производителей Betlux и Kingbright применяются в широком спектре цифровой электроники. Наиболее популярны и востребованы семисегментные индикаторы, которые, в свою очередь, имеют разные технические параметры, что следует учитывать при подборе компонента. Схема включения на плюсовую шину с общим катодом или анодом, количество разрядов (1.2, 3.4, 5), цвет свечения (желтый, зеленый, красный, синий). Особенность 14-и и 16-и сегментных индикаторов - установка компонентов в аппаратуры для вывода необходимой дополнительной буквенной информации.

ЖК-индикаторы знакосинтезирующие - буквенно-цифровые модули, в составе которых находятся контроллеры и жидкокристаллические дисплеи. Особенности модулей компаний Data Vision и Vinstar является встроенный контроллер с прошивкой двух языков (русский/английский), малое энергопотребление, наличие светодиодной подсветки. Модули фирмы МЭЛТ имеют программно-переключаемые страницы знакогенератора с дополнительным алфавитом (русский, белорусский, украинский, казахский и английский). Изделия управляются по параллельному интерфейсу с записью данных в ОЗУ. Выбор необходимого индикатора производится по его параметрам.

Посмотреть и купить товар вы можете в наших магазинах в городах: Москва, Санкт-Петербург, Волгоград, Воронеж, Екатеринбург, Ижевск, Казань, Калуга, Краснодар, Красноярск, Минск, Набережные Челны, Нижний Новгород, Новосибирск, Омск, Пермь, Ростов-на-Дону, Рязань, Самара, Тверь, Томск, Тула, Тюмень, Уфа, Челябинск. Доставка заказа почтой, через систему доставки Pickpoint или через салоны «Евросеть» в следующие города: Тольятти, Барнаул, Ульяновск, Иркутск, Хабаровск, Ярославль, Владивосток, Махачкала, Томск, Оренбург, Кемерово, Новокузнецк, Астрахань, Пенза, Липецк, Киров, Чебоксары, Калининград, Курск, Улан-Удэ, Ставрополь, Сочи, Иваново, Брянск, Белгород, Сургут, Владимир, Нижний Тагил, Архангельск, Чита, Смоленск, Курган, Орёл, Владикавказ, Грозный, Мурманск, Тамбов, Петрозаводск, Кострома, Нижневартовск, Новороссийск, Йошкар-Ола и др.

Товары из группы «Индикаторы и дисплеи» вы можете купить оптом и в розницу.

В статье изложены особенности устройства и разновидности дисплеев на основе жидких кристаллов, TFT-матриц и органических пленок (OLED) производства Bolymin, Winstar, Wisetip. Рассматриваются основные параметры различных типов жидкокристаллических дисплеев, что позволит сделать осознанный и правильный выбор LCD для каждого конкретного применения.

ООО “РТЭК”, Украина, г. Киев

Для отображения информации в большинстве современных устройств используются дисплеи, содержащие в своей основе ту или иную вариацию жидкокристаллического вещества. Появление дисплеев на основе жидких кристаллов стало возможным благодаря работам австрийского ботаника Фридриха Рейнитзера (Friedrich Reinitzer). В ходе своих исследований в 1888 г. вещества, известного как cholesteryl benzoate, он обнаружил, что оно имеет две явные точки плавления. В своем эксперименте он увеличивал температуру твердого образца и наблюдал превращение кристалла в мутную жидкость. Дальнейшее увеличение температуры приводило к появлению чистой прозрачной жидкости, пропускающей свет. Благодаря этой ранней работе считается, что именно Рейнитзер открыл новую жидкокристаллическую фазу материи. Через много лет, в 1968 г., фирмой RCA был создан первый экспериментальный жидкокристаллический индикатор (ЖКИ).

В основе любого ЖК-дисплея лежит конструктивный принцип, описанный ниже. Основой для последующих слоев ЖКИ являются две параллельные стеклянные пластины с нанесенными на них поляризационными пленками. Различают верхний и нижний поляризаторы, сориентированные перпендикулярно друг другу. На стеклянные пластины в тех местах, где в дальнейшем будет формироваться изображение, наносится прозрачная металлическая окисная пленка (оксиды индия и олова - ITO), которая в дальнейшем служит электродами. На внутреннюю поверхность стекол и электроды наносятся полимерные выравнивающие слои, которые затем полируются, что способствует появлению на их поверхности, соприкасающейся с ЖК, микроскопических продольных канавок. Пространство между выравнивающими слоями заполняют ЖК-веществом. В результате молекулы ЖК выстраиваются в направлении полировки выравнивающего слоя. Направления полировки верхнего и нижнего выравнивающих слоев перпендикулярны (подобно ориентации поляризаторов). Это нужно для предварительного “скручивания” слоев молекул ЖК на 90° между стеклами. Когда напряжение на управляющие электроды не подано, поток света, пройдя через нижний поляризатор, двигается через слои жидких кристаллов, которые плавно меняют его поляризацию, поворачивая ее на угол 90°. В результате поток света после выхода из ЖК материала беспрепятственно проходит через верхний поляризатор (сориентированный перпендикулярно нижнему) и попадает к наблюдателю. Никакого формирования изображения не происходит. При подаче напряжения на электроды между ними создается электрическое поле, что вызывает переориентацию молекул. Молекулы стремятся выстроиться вдоль силовых линий поля в направлении от одного электрода к другому. Вследствие этого пропадает эффект “скручивания” поляризованного света, под электродом возникает область тени, повторяющая его контуры. Создается изображение, формируемое светлой фоновой областью и темной областью под включенным электродом. Путем варьирования контуров площади, занимаемой электродом, можно формировать самые различные изображения: буквы, цифры, иконки и пр. Так создаются символьные ЖКИ. А при создании массива электродов (ортогональной матрицы) можно получить графический ЖКИ с разрешением, определяемым количеством задействованных электродов.

Таблица 1. Основные параметры и характерные особенности различных технологий изготовления ЖКИ

Описанная конструкция ЖКИ представляет собой пассивный вариант дисплея. В зависимости от разновидности примененных в дисплее жидких кристаллов различают следующие типы ЖКИ: TN, STN, CTN, FSTN, HTN, DSTN и ECB (VAN). Отличительные особенности этих дисплеев отражены в табл. 1.

Для производства больших цветных дисплеев в настоящее время широко используются ЖКИ на основе TFT (тонкопленочные транзисторы). В основе структуры TFT-панели содержатся жидкие кристаллы, два поляризатора и две стеклянные пластины: верхняя подложка цветового фильтра и нижняя подложка массива TFT. Жидкокристаллическое вещество впрыскивается между этими стеклянными пластинами. Регулирование светового потока осуществляется путем изменения величины входного напряжения, подаваемого на ЖК. Тем самым изменяется расположение и ориентация ЖК-молекул, что приводит к соответствующему изменению объема светового потока, проходящего через них. При изготовлении такой панели с помощью высокоточных фотолитографических технологий на стеклянную подложку наносится узор для последовательного пошагового переноса изображений множества электродов ЖКИ. Количество транзисторов на стекле TFT равно числу подпикселей дисплея, при этом генерацию цвета обеспечивает стекло цветового фильтра с нанесенным на него фильтром цвета. Движение жидких кристаллов вызывается появлением разности потенциалов между электродами, находящимися на стекле TFT и стекле цветового фильтра, и именно это движение приводит к генерации цвета и изменению яркости ЖКИ.

В пределах одного выбранного периода времени переключатель замыкается, и на ЖК подается входное напряжение, что приводит к изменению ориентации жидкокристаллических молекул. После выключения переключателя в емкости Clc (эквивалентная емкость ЖК-вещества) сохраняется некоторый заряд, уменьшающийся с течением времени. Для увеличения продолжительности хранения заряда параллельно Clc добавляется запоминающий конденсатор Cst. Поскольку фактически управление жидкими кристаллами производится переменным напряжением, для активации ЖК напряжение подается только при включенном переключателе, после чего он немедленно отключается. В ряде случаев напряжение на ЖК будет падать из-за утечек. Для предотвращения этого и используется дополнительный конденсатор Сst, компенсирующий утечки. При достаточной его емкости напряжение на нем будет приближаться к идеальной форме меандра.

В TFT-панели тонкопленочный транзистор выполняет функцию рассмотренного переключателя. Вывод затвора TFT подключен к линии сканирования, вывод истока соединен с линией данных, а вывод стока с Clc и Сst . Когда затвор активизирован (выбран на линии сканирования), канал TFT открывается и данные об изображении записываются в Clc и Cst. Если затвор не выбран, TFT закрыт.

Технология LTPS TFT

Технология LTPS (низкотемпературная поликремневая) - это новейший производственный процесс изготовления TFT-панелей. В этой технологии используется лазерный отжиг, который позволяет производить кристаллизацию кремниевой пленки при температуре менее 400 °С. Поликристаллический кремний - материал на основе кремния, содержащий множество кристаллов кремния размером от 0,1 до нескольких микрон. При производстве полупроводников поликристаллический кремний обычно изготавливается при помощи LPCVD (Low Pressure Chemical Vapor Deposition - химическое осаждение при низком давлении из газообразной фазы), а затем отжигается при температуре более 900 °С. Этот метод известен как SPC (Solid Phase Crystallization - кристаллизация твердой фазы). Очевидно, что такой метод не удастся применить при производстве индикаторных панелей, поскольку температура плавления стекла составляет 650 °С. Поэтому для создания ЖК-панелей идеально подходит новая низкотемпературная технология LTPS.

В отличие от технологии a-Si, LTPS технология характеризуется более чем в 300 раз большей подвижностью электронов. Это объясняет, почему каждый элемент LTPS индикатора имеет большую скорость реакции на воздействие и меньшие размеры, чем элементы, изготовленные по а-Si технологии.

Вот несколько отличий p-Si технологии от a-Si технологии:

Более высокая технологичность изготовления на подложке интегральной схемы драйвера управления;

Более высокое быстродействие TFT, меньший размер, меньше контактов и элементов;

Проще схемотехника;

Увеличение надежности панели;

Высокие апертурный коэффициент и разрешающая способность.

Дисплеи на основе органических пленок (OLED)

Сравнительно недавно на рынке появились дисплеи нового, отличного от ЖКИ типа, т.н. OLED (Organic Light Emitting Device). Дисплей OLED представляет собой электронное устройство, выполненное путем размещения ряда тонких органических пленок между проводниками. При подключении источника питания к выбранным элементам дисплея они излучают яркий свет. Технология OLED идеально подходит для изготовления дисплеев, используемых в портативных устройствах, позволяя создавать легкие, надежные и малопотребляющие дисплеи. Для получения OLED дисплеев требуется меньшее число производственных этапов и более дешевые материалы, в сравнении с ЖКИ. Ведущий лидер в производстве таких дисплеев, корпорация Universal Display (UDC) полагает, что технология OLED может заменить существующие технологии создания дисплеев во многих областях за счет следующих преимуществ перед ЖКИ:

Более высокая яркость;

Более высокое быстродействие, улучшающее качество отображения и динамику видеоизображений;

Расширенный угол обзора (до 180°);

Малый вес;

Меньшее энергопотребление;

Более широкий диапазон рабочих температур;

Меньшая совокупная стоимость.

Все многообразие ЖК-дисплеев можно разделить на несколько типов в зависимости от технологии производства, конструкции, оптических и электрических характеристик.

Конструкция

Конструкция жидкокристаллического дисплея определяется расположением слоев в “бутерброде” (включая и светопроводящий слой) и имеет наибольшее значение для качества изображения на экране (в любых условиях: от темного помещения до работы при солнечном свете). В настоящее время используются три основных типа цветных LCD:

Пропускающий (transmissive), предназначенный в основном для оборудования, работающего в помещении;

Отражающий (reflective) применяется в калькуляторах и часах;

Проекционный (projection) используется в ЖК-проекторах.

Компромиссной разновидностью пропускающего типа дисплея для работы как в помещении, так и при внешнем освещении, является полупрозрачный (transflective) тип конструкции.

Пропускающий тип дисплея (transmissive)

В этом типе конструкции свет поступает сквозь жидкокристаллическую панель с задней стороны (подсветка). По этой технологии изготовлено большинство ЖК-дисплеев, используемых в ноутбуках и карманных компьютерах. Transmissive LCD имеет высокое качество изображения в помещении и низкое (черный экран) при солнечном свете, т.к. отраженные от поверхности экрана солнечные лучи полностью подавляют свет, излучаемый подсветкой.

Эта проблема решается (в настоящее время) двумя способами: увеличением яркости задней подсветки и уменьшением количества отраженного солнечного света.

Для работы при дневном освещении в тени необходима лампа подсветки, обеспечивающая 500 кд/м², при прямом солнечном свете - 1000 кд/м². Яркости в 300 кд/м² можно добиться путем предельного увеличения яркости одной лампы CCFL (Cold Cathode Fluorescent Lamp) или добавлением второй лампы, расположенной напротив. Модели жидкокристаллических дисплеев с повышенной яркостью используют от 8 до 16 ламп. Однако увеличение яркости подсветки увеличивает расход энергии батарей (одна лампа подсветки потребляет около 30 % энергии, используемой устройством). Следовательно, экраны с повышенной яркостью можно использовать только при наличии внешнего источника питания.

Уменьшение количества отраженного света достигается нанесением антиотражающего покрытия на один или несколько слоев дисплея, заменой стандартного поляризационного слоя на минимально отражающий, добавлением пленок, повышающих яркость и, таким образом, увеличивающих эффективность источника света.

Полупрозрачный тип дисплея (transflective)

Похож на пропускающий, но у него между слоем жидких кристаллов и подсветкой имеется так называемый частично отражающий слой. Он может быть или частично серебряным, или полностью зеркальным со множеством маленьких отверстий. Когда такой экран используется в помещении, он работает аналогично transmissive LCD, в котором часть освещения поглощается отражающим слоем. При дневном освещении солнечный свет отражается от зеркального слоя и освещает слой ЖК, при этом свет проходит жидкие кристаллы дважды (внутрь, а затем наружу). Как следствие, качество изображения при дневном освещении ниже, чем при искусственном освещении в помещении, когда свет проходит LCD один раз.

Таблица 2. Алфавитно-цифровые ЖК-модули

(нажмите на таблицу, чтобы увеличить ее)


Баланс между качеством изображения в помещении и при дневном освещении достигается подбором характеристик пропускающего и отражающего слоев.

Отражающий тип дисплея (reflective)

Имеет полностью отражающий зеркальный слой. Все освещение (солнечный свет или свет передней подсветки), проходит сквозь ЖКИ, отражается от зеркального слоя и снова проходит сквозь ЖКИ. В этом случае качество изображения у дисплеев отражающего типа ниже, чем у полупропускающего (так как в обоих случаях используются сходные технологии). В помещении передняя подсветка не так эффективна, как задняя, и, соответственно, качество изображения - ниже.

Таблица 3. TFT-модули

(нажмите на таблицу, чтобы увеличить ее)


Основные параметры жидкокристаллических панелей

Разрешение. Цифровая панель, число пикселей в которой строго соответствует номинальному разрешению, должна корректно и быстро масштабировать изображение. Простой способ проверки качества масштабирования - изменение разрешения (на экране текст, написанный мелким шрифтом). По контурам букв легко заметить качество интерполяции. Качественный алгоритм дает ровные, но немного размытые буквы, тогда как быстрая целочисленная интерполяция обязательно вносит искажения. Быстродействие - второй параметр разрешения (для масштабирования одного кадра требуется время на интерполяцию).

Угол обзора. Максимальный угол обзора определяется как угол, при обзоре с которого контрастность изображения уменьшается в 10 раз. Но в первую очередь при изменении угла обзора от 90° видны искажения цвета. Поэтому, чем больше угол обзора, тем лучше. Различают горизонтальный и вертикальный угол обзора, рекомендуемые минимальные значения - 140 и 120 градусов соответственно (наилучшие углы обзора дает технология MVA).

Время отклика (инерционность) - время, за которое транзистор успевает изменить пространственную ориентацию молекул жидких кристаллов (чем меньше, тем лучше). Для того чтобы быстро движущиеся объекты не казались смазанными, достаточно времени отклика 25 мс. Этот параметр состоит из двух величин: времени на включение пикселя (come_up time) и времени на выключение (come_down time). Время отклика (точнее, время выключения как наибольшее время, за которое отдельный пиксель максимально изменяет свою яркость) определяет частоту обновления изображения на экране FPS = 1 с/время отклика.

Таблица 4. Графические ЖК-модули

(нажмите на таблицу, чтобы увеличить ее)


Яркость - преимущество ЖК-дисплея, которое в среднем в два раза выше показателей ЭЛТ. С увеличением интенсивности лампы подсветки сразу возрастает яркость, а в ЭЛТ необходимо усиливать поток электронов, что приводит к значительному усложнению ее конструкции и повышает электромагнитное излучение. Рекомендуемое значение яркости - не менее 200 кд/м².

Контрастность определяется как соотношение между максимальной и минимальной яркостью. Основная проблема заключается в сложности получения точки черного цвета, т.к. лампа подсветки включена постоянно и для получения темных тонов используется эффект поляризации. Черный цвет зависит от качества перекрытия светового потока подсветки.

Температурная компенсация LCD-дисплеев

Установки оптимальной контрастности LCD дисплеев сильно зависят от окружающей температуры. Для большинства применений эти изменения контрастности незначительны в диапазоне “нормальных” температур от 0 до +50 °С. Большинство LCD модулей допускают работу в расширенном температурном диапазоне от -20 до +70 °С. Изменения контрастности в столь широком диапазоне температур становятся заметными, что приводит к необходимости коррекции напряжения контрастности LCD в зависимости от температуры.

При уменьшении рабочей температуры LCD дисплеи требуют повышения рабочего напряжения для сохранения оптической контрастности. В сравнительных таблицах (табл. 2-4) приведены основные механические и электрические характеристики алфавитно-цифровых, графических и TFT-модулей ведущих производителей ЖК-индикаторов - Bolymin, Winstar, Wisetip.

Литература


1. WINSTARS" Data Sheets: (http://www.winstar.com.tw/)

2. WISETIPS" Data Sheets: (http://www.wisetip.com.tw)

3. BOLYMINS" Data Sheets: (http://www.bolymin.com.tw/)

Я. Белецкий,

ООО “РТЭК”, Украина, г. Киев,