Виды триангуляции. Триангуляция и геодезические пункты

Основными методами создания государственной геодезической сети являются триангуляция, трилатерация, полигонометрия и спутниковые координатные определения.

Триангуляция (рис. 68, а) представляет собой цепь прилегающих друг к другу треугольников, в каждом из которых измеряют высокоточными теодолитами все углы. Кроме того, измеряю длины сторон в начале и конце цепи.

Рис. 68. Схема триангуляции (а) и полигонометрии (б).

В сети триангуляции известными являются базис L и координаты пунктов А и В. Для определения координат остальных пунктов сети измеряют в треугольниках горизонтальные углы.

Триангуляция делится на классы 1, 2, 3, 4. Треугольники разных классов различаются длинами сторон и точностью измерения углов и базисов.

Развитие сетей триангуляции выполняется с соблюдением основного принципа «от общего к частному», т.е. сначала строится триангуляция 1 класса, а затем последовательно 2, 3 и 4 классов.

Пункты государственной геодезической сети закрепляются на местности центрами. Для обеспечения взаимной видимости между пунктами над центрами устанавливают геодезические знаки деревянные или металлические. Они имеют приспособление для установки прибора, платформу для наблюдателя и визирное устройство.

В зависимости от конструкции, наземные геодезические знаки подразделяются на пирамиды и простые и сложные сигналы.

Типы подземных центров устанавливаются в зависимости от физико-географических условий региона, состава грунта и глубины сезонного промерзания грунта. Например, центр пункта государственной геодезической сети 1-4 классов типа 1 согласно инструкции «Центры и реперы государственной геодезической сети» (М., Недра, 1973) предназначен для южной зоны сезонного промерзания грунтов. Он состоит из железобетонного пилона сечением 16Х16 см (или асбоцементной трубы 14-16 см, заполненной бетоном) и бетонного якоря. Пилон цементируется в якорь. Основание центра должно располагаться ниже глубины сезонного промерзания грунта не менее 0,5 м и не менее 1,3 м от поверхности земли. В верхней части знака на уровне поверхности земли бетонируется чугунная марка. Над маркой в радиусе 0,5 м насыпается грунт слоем 10-15 см. В 1,5м от центра устанавливается опознавательный столб с охранной плитой.

В настоящее время широко используют радиотехнические средства для определения расстояний между пунктами сети с относительными ошибками 1:100 000 – 1:1 000 000. Это дает возможность строить геодезические сети методом трилатерации , при которой в сетях треугольников производится только измерение сторон. Величины углов вычисляют тригонометрическим способом.

Метод полигонометрии (рис. 68, б) состоит в том, что опорные геодезические пункты связывают между собой ходами, называемыми полигонометрическими. В них измеряют расстояния и справа лежащие углы.

Спутниковые методы создания геодезических сетей подразделяются на геометрические и динамические. В геометрическом методе искусственный спутник Земли используют как высокую визирную цель, в динамическом – ИСЗ является носителем координат.

Триангуляция (в геодезии) Триангуляция (от лат. triangulum ‒ треугольник), один из методов создания сети опорных геодезических пунктов и сама сеть, созданная этим методом; состоит в построении рядов или сетей примыкающих друг к другу треугольников и в определении положения их вершин в избранной системе координат. В каждом треугольнике измеряют все три угла, а одну из его сторон определяют из вычислений путём последовательного решения предыдущих треугольников, начиная от того из них, в котором одна из его сторон получена из измерений. Если сторона треугольника получена из непосредственных измерений, то она называется базисной стороной Т. В прошлом вместо базисной стороны непосредственно измеряли короткую линию, называемую базисом, и от неё путём тригонометрических вычислений через особую сеть треугольников переходили к стороне треугольника Т. Эту сторону Т. обычно называют выходной стороной, а сеть треугольников, через которые она вычислена,‒ базисной сетью. В рядах или сетях Т. для контроля и повышения их точности измеряют большее число базисов или базисных сторон, чем это минимально необходимо.

Принято считать, что метод Т. изобрёл и впервые применил В. Снеллиус в 1615‒17 при прокладке ряда треугольников в Нидерландах для градусных измерений . Работы по применению метода Т. для топографических съёмок в дореволюционной России начались на рубеже 18‒19 вв. К началу 20 в. метод Т. получил повсеместное распространение.

Т. имеет большое научное и практическое значение. Она служит для: определения фигуры и размеров Земли методом градусных измерений; изучения горизонтальных движений земной коры; обоснования топографических съёмок в различных масштабах и целях; обоснования различных геодезических работ при изыскании, проектировании и строительстве крупных инженерных сооружений, при планировке и строительстве городов и т.д.

При построении Т. исходят из принципа перехода от общего к частному, от крупных треугольников к более мелким. В связи с этим Т. подразделяется на классы, отличающиеся точностью измерений и последовательностью их построения. В малых по территории странах Т. высшего класса строят в виде сплошных сетей треугольников. В государствах с большой территорией (СССР , Канада , КНР , США и др.) Т. строят по некоторой схеме и программе. Наиболее стройная схема и программа построения Т. применяется в СССР.

Государственная Т. в СССР делится на 4 класса (рис. ). Государственная Т. СССР 1-го класса строится в виде рядов треугольников со сторонами 20‒25 км , расположенных примерно вдоль меридианов и параллелей и образующих полигоны с периметром 800‒1000 км . Углы треугольников в этих рядах измеряют высокоточными теодолитами , с погрешностью не более ╠ 0,7" . В местах пересечения рядов Т. 1-го класса измеряют базисы при помощи мерных проволок (см. Базисный прибор ), причём погрешность измерения базиса не превышает 1: 1000000 доли его длины, а выходные стороны базисных сетей определяются с погрешностью около 1: 300 000. После изобретения высокоточных электрооптических дальномеров стали измерять непосредственно базисные стороны с погрешностью не более 1: 400 000. Пространства внутри полигонов Т. 1-го класса покрывают сплошными сетями треугольников 2-го класса со сторонами около 10‒20 км , причём углы в них измеряют с той же точностью, как и в Т. 1-го класса. В сплошной сети Т. 2-го класса внутри полигона 1-го класса измеряется также базисная сторона с указанной выше точностью. На концах каждой базисной стороны в Т. 1-го и 2-го классов выполняют астрономические определения широты и долготы с погрешностью не более ╠ 0,4" , а также азимута с погрешностью около ╠ 0,5" . Кроме того, астрономические определения широты и долготы выполняют и на промежуточных пунктах рядов Т. 1-го класса через каждые примерно 100 км , а по некоторым особо выделенным рядам и значительно чаще.

На основе рядов и сетей Т. 1-го и 2-го классов определяют пункты Т. 3-го и 4-го классов, причём их густота зависит от масштаба топографической съёмки. Например, при масштабе съёмки 1: 5000 один пункт Т. должен приходиться на каждые 20‒30 км 2 . В Т. 3-го и 4-го классов погрешности измерения углов не превышают соответственно 1,5" и 2,0" .

В практике СССР допускается вместо Т. применять метод полигонометрии .При этом ставится условие, чтобы при построении опорной геодезической сети тем и др. методом достигалась одинаковая точность определения положения пунктов земной поверхности.

Вершины треугольников Т. обозначаются на местности деревянными или металлическими вышками высотой от 6 до 55 м в зависимости от условий местности (см. Сигнал геодезический ). Пункты Т. в целях долговременной их сохранности на местности закрепляются закладкой в грунт особых устройств в виде металлических труб или бетонных монолитов с вделанными в них металлическими марками (см. Центр геодезический ), фиксирующими положение точек, для которых даются координаты в соответствующих каталогах.

Координаты пунктов Т. определяют из математической обработки рядов или сетей Т. При этом реальную Землю заменяют некоторым референц-эллипсоидом , на поверхность которого приводят результаты измерения углов и базисных сторон Т. В СССР принят референц-эллипсоид Красовского (см. Красовского эллипсоид ). Построение Т. и её математическая обработка приводят к созданию на всей территории страны единой системы координат, позволяющей ставить топографо-геодезические работы в разных частях страны одновременно и независимо друг от друга. При этом обеспечивается соединение этих работ в одно целое и создание единой общегосударственной топографической карты страны в установленном масштабе.

Лит.: Красовский Ф. Н., Данилов В. В., Руководство по высшей геодезии, 2 изд., ч. 1, в. 1‒2, М., 1938‒39; Инструкция о построении государственной геодезической сети СССР, 2 изд., М., 1966.

Л. А. Изотов.

Большая советская энциклопедия. - М.: Советская энциклопедия . 1969-1978 .

Смотреть что такое "Триангуляция (в геодезии)" в других словарях:

    В геодезии Триангуляция (геодезия) один из методов создания сети опорных геодезических пунктов и сама сеть. В сотовой связи Триангуляция (сотовая связь) один из методов вычисления места нахождения абонента мобильной связи, путём наложения… … Википедия

    I Триангуляция (от лат. triangulum треугольник) один из методов создания сети опорных геодезических пунктов (См. Геодезический пункт) и сама сеть, созданная этим методом; состоит в построении рядов или сетей примыкающих друг к другу… …

    БАЗИС, в геодезии линия на местности, измеряемая с высокой точностью и служащая для определения длин сторон геодезической сети в триангуляции (см. ТРИАНГУЛЯЦИЯ) … Энциклопедический словарь

    ГЕЛИОТРОП (от гелио... и греч. tropos поворот, направление), в геодезии прибор, основная часть плоское зеркало, которое отражает солнечные лучи с одного геодезического пункта к другому при триангуляции (см. ТРИАНГУЛЯЦИЯ) … Энциклопедический словарь

    Раздел спутниковой геодезии, в котором геодезические задачи решаются на основе позиционных (угловых) наблюдений ИСЗ, преимущественно фотографических. Такие наблюдения позволяют определить положение совокупности точек земной поверхности в… … Большая советская энциклопедия

    Генерального штаба генерал лейтенант, один из заслуженнейших русских геодезистов, род. в Виленской губернии 6 декабря 1800 г., умер в Тифлисе 21 февраля 1881 г.; после основательного домашнего воспитания он на 16 м году от роду поступил на физико … Большая биографическая энциклопедия

    - (греч. geōdaisía, от gē Земля и dáiō делю, разделяю) наука об определении фигуры, размеров и гравитационного поля Земли и об измерениях на земной поверхности для отображения её на планах и картах, а также для проведения различных… … Большая советская энциклопедия

Триангуляционную схему (рис. 1) условно можно разделить на три части: излучательный (или осветительный) канал, контролируемая поверхность, приёмный канал.

Рис. 1. Принципиальная схема триангуляционного измерителя: 1 - излучательный канал,
2 - контролируемая поверхность, 3 - приёмный канал.

Первая часть схемы – излучательный канал, который состоит из источника излучения и объектива, который формирует зондирующий пучок на контролируемой поверхности. В качестве источника излучения, как правило, используется лазерный диод. Распределение света, создаваемое такими источниками называется гауссовым (рис. 2, а).

Шириной d зондирующего пучка называется расстояние между точками профиля интенсивности на уровне Imax/e.

Перетяжкой гауссового пучка называется минимальная ширина пучка вдоль направления распространения. На рисунке 2, б перетяжка расположена в плоскости А. Очевидно, в этой плоскости интенсивность зондирующего пучка достигает максимального значения.

Рис. 2. а - распределение Гаусса (I – интенсивность, y – направление перпендикулярное распространению излучения), б - гауссовый пучок в продольном разрезе (z – направление распространения излучения).

Объектив состоит из одной или нескольких оптических линз. Относительное положение объектива и лазерного диода определяет настройку излучательного канала. Чтобы настроить лазерный модуль необходимо выставить перетяжку в центр диапазона измерения и отцентрировать зондирующий пучок.

Результатом хорошей настройки является отцентрированный пучок, ширина и интенсивность которого симметрично изменяются относительно центра диапазона измерения.

Вторая неотъемлемая часть триангуляционной измерительной схемы – это контролируемая поверхность. Каждая поверхность имеет свойство отражать или рассеивать падающее излучение. Рассеяние излучения поверхностью контролируемого объекта используется в триангуляции как физическая основа для получения информации о расстоянии до этой поверхности.

Задача триангуляционного датчика – измерить расстояние от выбранной точки на оси зондирующего пучка до физической точки поверхности с высокой точностью. Любая контролируемая поверхность характеризуется неровностью или степенью своей гладкости – шероховатостью Rz. Как правило, требуемая точность измерения обратно пропорциональна шероховатости контролируемой поверхности. Так, шероховатость поверхности кристаллов микроэлектроники, а значит и измеряемое расстояние до них, имеют масштаб от нескольких микрометров. А, например, в геодезической отрасли необходимо определять расстояния с точностью до сотен и тысяч метров.

Основу промышленного размерного контроля составляет определение параметров металлических поверхностей. Требуемая при этом точность контроля составляет от нескольких (атомная промышленность) до сотен мкм (железнодорожная отрасль).

Каждая поверхность имеет также свойство отражать или рассеивать падающее излучение. Рассеяние излучения поверхностью контролируемого объекта используется в триангуляции как физическая основа для получения информации о расстоянии до этой поверхности. Поэтому, контролируемая поверхность является неотъемлемой частью триангуляционной измерительной схемы.

Третья часть схемы триангуляционного измерителя – приемный канал, который состоит из проецирующего объектива и фотоприемника.

Проецирующий объектив формирует изображение зондирующего пятна в плоскости фотоприемника. Чем больше диаметр D объектива, тем выше его светосила. Иначе говоря, тем интенсивнее и качественнее строится изображение пятна.

В зависимости от конкретной реализации, для регистрации сформированного изображения качестве приемника используют либо фотодиодную линейку, либо позиционно-чувствительный приемник.

Схема триангуляционного измерителя, приведенная на рисунке 1, работает следующем образом. Излучательный канал 1 формирует изображение светового пятна на контролируемой поверхности 2. Далее рассеянный контролируемой поверхностью свет попадает в приемный канал 3. Таким образом, в плоскости фотоприемника создается изображение освещенного участка контролируемой поверхности (световое пятно). При смещении контролируемой поверхности на величину?z(рис. 1), световое пятно в плоскости фотоприемника смещается на величину?x. Зависимость смещения контролируемой поверхности?z от смещения светового пятна в плоскости фотоприемника?x, имеет следующий вид:

где - это расстояния от контролируемой поверхности 2 до проецирующего объектива приемного канала 3, и от проецирующего объектива до фотоприемника, притом, что контролируемая поверхность находится в центре диапазона измерений смещений, соответственно.

Характерной и главной особенностью рассматриваемого периода развития геодезии были геодезические сети . Геодезическая сеть - это совокупность закрепленных на местности точек с определенными координатами . Они создавались в целях: 1) решения главной научной задачи – определение фигуры Земли и ее гравитационного поля ; 2)картографирования страны; 3)решения задач прикладной геодезии. Основным методом построения геодезических сетей стал появившийся в 16в. метод триангуляции , хотя этот метод был известен еще в глубокой древности (греческий математик Фалес использовал его для определения расстояния до корабля). Этот метод заключается в построении на местности треугольников, в которых измерялись углы и одна сторона. Вершины треугольников закрепляли специальными знаками. С начала это были одиночные треугольники , затем стали строить цепочки их и сплошные сети с измерением в них одного или нескольких базисов (сторон) и всех углов . Первое упоминание о методе триангуляции сделал Гемма Фризиус в 1546г. Он при реализации этого метода на большой территории применял прибор планиметр – модифицированную упрощенную астролябию с компасом, которая устанавливалась горизонтально на вертикальную подставку. Этот метод использовал Мартин Вальдземюллер, применив разработанный им в 1513г. прибор полиметрум, которым можно было измерять горизонтальные или вертикальные углы . Это был прототип современноготеодолита . Известный картограф Герард Меркатор (1512-1594), ученик Геммы Фризиуса, был одним из первых применивших метод триангуляции при съемках для получения точных карт территории Голландии в 1540г. Англичанин Кристофер Сакстон в течение 9 лет выполнял съемки Уэльса, в которых использовал триангуляционный метод Фризиуса. В 1596г. Раттикус издал труд по основам триангуляции. Итак, начало применения триангуляционного метода при съемках относится к первой половине 16в., а первым инструментом была приспособленная для этих целей астролябия. Разработкой, применением и совершенствованием метода занимались преимущественно математики, геометры, работавшие в университетах.

В 17в. наступил второй этап в формировании метода триангуляции и реализации его в трех направлениях: 1) как строго научной основы топографических съемок, 2) как средства распространения единой системы координат на территории страны, 3) как главного метода определения формы и размеров Земли. Распространению этого метода в 17в. способствовало внедрение и освоение в геодезии тригонометрии и логарифмов , изобретенных Непером в 1614г.

Вильгельм Шикхарт, на основе своего опыта по созданию опорной геодезической сети для топографической съемки Вюртенберга, в 1629г. опубликовал первый геодезический учебник на немецком языке «Краткое руководство по искусству съемки земель».

Примером всех 3-х направлений являются работы 4-х поколений геодезистов Кассини (Жан, Жак, Цезарь) во Франции, решивших с помощью построения сплошной сети триангуляции три главные задачи – создание точной карты Франции, распространение единой системы координат и получение размера Земли. Голландский математик Виллеброрд Снеллиус (1591-1626) проложил в 1615-1616гг. ряд триангуляции для решения задачи 3-го направления. В России считают Снеллиуса автором этого метода. Француз Жан Пикар (1620-1682) в 1669-1670гг., используя ряд триангуляции определил длину дуги парижского меридиана в один градус, равную 111,212км. (современная величина 111,18км).

Для определения высоты объекта и решения других задач применяли различные комбинации реек, например, описанную Леонардо да Винчи.

Астролябия в эту эпоху стала важнейшим прибором в навигации и геодезии. Для применения в практической геометрии астролябия была реконструирована в горизонтальное положение, в нее встроили компас, изменили и оформление. Круг астролябии имел 360 делений и каждое из них делили еще на 10 частей. Наименьшее деление круга равнялось 6’.

Для измерения углов кроме астролябии применяли квадрат и квадрант. Геометрический квадрат был модифицирован - в него включалась дуга квадранта. Квадранты в этот период были наиболее важными астрономическими инструментами. Их стали строить больших размеров и стационарного и меридианного типов. Европейцы упростили квадрант, встроили в него компас. Квадрант применялся главным образом для измерения вертикальных углов при определении превышений методом тригонометрического нивелирования, а также для определения времени по наблюдениям высот небесных светил. Для повышения точности отсчитывания долей деления на квадранте Педро Нониус (1492-1577) предложил специальное устройство – нониус . В дальнейшем нониус был преобразован П. Верньером в отсчетное устройство (описано в 1631г.) и стало называться верньер. Точность отсчитывания по верньеру возросла на порядок.


Триангуляция (от лат. triangulum – треугольник) – один из методов создания опорной геодезической сети.
Триангуляция - метод построения на местности ГС в виде треугольников, у которых измерены все углы и базисные выходные стороны (рис.14.1). Длины остальных сторон вычисляют по тригонометрическим формулам (например, a=c . sinA/sinC, b=c . sinA/sinB), затем находят дирекционные углы (азимуты) сторон и определяют координаты.

Принято считать, что метод триангуляции изобрёл и впервые применил В. Снеллиус в 1615–17 гг. при прокладке ряда треугольников в Нидерландах для градусных измерений. Работы по применению метода триангуляции для топографических съёмок в дореволюционной России начались на рубеже 18–19 вв. К началу 20 в. метод триангуляции получил повсеместное распространение.
Триангуляция имеет большое научное и практическое значение. Она служит для: определения фигуры и размеров Земли методом градусных измерений; изучения горизонтальных движений земной коры; обоснования топографических съёмок в различных масштабах и целях; обоснования различных геодезических работ при изыскании, проектировании и строительстве крупных инженерных сооружений, при планировке и строительстве городов и т.д.

В практике допускается вместо триангуляции применять метод полигонометрии. При этом ставится условие, чтобы при построении опорной геодезической сети тем и др. методом достигалась одинаковая точность определения положения пунктов земной поверхности.

Вершины треугольников триангуляции.обозначаются на местности деревянными или металлическими вышками высотой от 6 до 55 м в зависимости от условий местности (см. Сигнал геодезический). Пункты триангуляции в целях долговременной их сохранности на местности закрепляются закладкой в грунт особых устройств в виде металлических труб или бетонных монолитов с вделанными в них металлическими марками (см. Центр геодезический), фиксирующими положение точек, для которых даются координаты в соответствующих каталогах.

3) Спутниковая топографическая съемка

Спутниковая съемка применяется для составления топографических карт обзорного характера или мелкого масштаба. Спутниковые GPS измерения очень точны. Но во избежание применения данной системы для военных нужд, точность была уменьшена с
Топографическая съемка с применением глобальных навигационных спутниковых систем позволяет изображать на топографических планах масштабов 1:5000, 1:2000, 1:1000 и 1:500 с необходимой достоверностью и точностью следующие объекты:

1) пункты триангуляции, полигонометрии, трилатерации, грунтовые реперы и пункты съемочного обоснования, закрепленные на местности (наносятся по координатам);
2) промышленные объекты - буровые и эксплуатационные скважины, нефтяные и газовые вышки, наземные трубопроводы, колодцы и сети подземных коммуникаций (при исполнительной съемке);
3) железные, шоссейные и грунтовые дороги всех видов и некоторые сооружения при них - переезды, переправы и т.п.;
4) гидрография - реки, озера, водохранилища, площади разливов, приливно-отливные полосы и т.д. Береговые линии наносятся по фактическому состоянию на момент съемки или на межень;
5) объекты гидротехнические и водного транспорта - каналы, канавы, водоводы и водораспределительные устройства, плотины, пристани, причалы, молы, шлюзы и др.;
6) объекты водоснабжения - колодцы, колонки, резервуары, отстойники, естественные источники и др.;
7) рельеф местности с применением горизонталей, отметок высот и условных знаков обрывов, воронок, осыпей, оврагов, оползней, ледников и др. Формы микрорельефа изображаются полугоризонталями или вспомогательными горизонталями с отметками высот местности;
8) растительность кустарниковая, травяная, культурная растительность (плантации, луга и др.), отдельно стоящие кусты;
9) грунты и микроформы земной поверхности: пески, галечники, такыры, глинистые, щебеночные, монолитные, полигональные и другие поверхности, болота и солончаки;
10) границы - политико-административные, землепользований и заповедников, различные ограждения.
Множество GPS приборов, представленных на рынке сегодня, позволяет специалистам проводить тщательные замеры при прокладке дорог, строительстве различных сооружений, измерении площади земель, создании карт рельефа местности для добычи нефти и т.п.
Использование компьютерных методов моделирования и совершенство расчетов прекрасно дополняют топографическую съемку .