Схема ик приемника для дистанционного управления электрическими приборами. Arduino Uno

Приемник ИК — команд пульта дистанционного управления для управления бытовой техникой может быть легко сделан с применением десятичного счетчика CD4017, таймера NE555 и инфракрасного приемника TSOP1738.

Используя эту схема ИК приемника, можно с легкостью управлять своей бытовой техникой с помощью пульта от телевизора, DVD-плеера или же с помощью схемы ПДУ описанного в конце статьи.

Схема ИК приемника для дистанционного управления

Выводы 1 и 2 ик-приемника TSOP1738 используются для его питания. Резистор R1 и конденсатор C1 предназначены для стабильной работы и подавления различных помех по цепи питания.

Когда ИК лучи на частоте 38 кГц падает на ИК-приемник TSOP1738, на его выходе 3 появляется низкий уровень напряжения, при исчезновении ик-лучей вновь появляется высокий уровень. Этот отрицательный импульс усиливается транзистором Q1, который передает усиленный частотный сигнал на вход десятичного счетчика CD4017. Выводы счетчика 16 и 8 предназначены для питания его. Вывод 13 подключен к земле, разрешая тем самым его работу.

Выход Q2 (4 контакт) подключен к выводу сброса (15 контакт), чтобы сделать работу CD4017 в режиме бистабильного мультивибратора. В время первого импульса на Q0 появляется лог1, второй синхросигнал вызывает появление лог1 на Q1 (Q0 становится низким), а на третий сигнал опять выводит на Q0 лог 1 (Q2 подключен к MR, поэтому третий тактовый сигнал сбрасывает счетчик).

Давайте предположим, счетчик совершил сброс (Q0 высокий уровень, а остальные низкий). При нажатии на кнопку ПДУ, тактовый сигнал воздействует на счетчик, что приводит к появлению высокого уровня на Q1. Таким образом, LED D1 светится, транзистор Q2 включается и активируется реле.

Когда вновь нажимают кнопку ПДУ, на выводе Q0 появляется лог 1, реле отключается и LED D2 загорается. LED D1 указывает, когда прибор включен и LED D2 указывает, когда прибор выключен.

Вы можете использовать свой пульт от телевизора для управления или собрать отдельный на по приведенной ниже схеме.

В бытовой радиоэлектронной аппаратуре получили широкое применение интегральные приёмники инфракрасного излучения. По-другому их ещё называют ИК-модулями.

Их можно обнаружить в любом электронном приборе, управлять которым можно с помощью пульта дистанционного управления.

Вот, например, ИК-приёмник на печатной плате телевизора.


Несмотря на кажущуюся простоту данного электронного компонента – это специализированная интегральная схема, предназначенная для приёма инфракрасного сигнала от пультов дистанционного управления (ДУ). Как правило, ИК-приёмник имеет не менее 3-х выводов. Один вывод является общим и подключается к минусу «-» питания (GND ), другой служит плюсовым «+» выводом (Vs ), а третий выходом принимаемого сигнала (Out ).

В отличие от обычного инфракрасного фотодиода, ИК-приёмник может принимать и обрабатывать инфракрасный сигнал, представляющий собой ИК-импульсы фиксированной частоты и определённой длительности – пачки импульсов. Это технологическое решение избавляет от случайных срабатываний, которые могут быть вызваны фоновым излучением и помехами со стороны других приборов, излучающих в инфракрасном диапазоне.

Например, сильные помехи для приёмника ИК-сигналов могут создавать люминесцентные осветительные лампы с электронным балластом . Понятно, что использовать ИК-приёмник взамен обычного ИК-фотодиода не получиться, ведь ИК-модуль является специализированной микросхемой, заточенной под определённые нужды.

Для того чтобы понять принцип работы ИК-модуля разберёмся более детально в его устройстве с помощью структурной схемы.

Микросхема приёмника ИК-излучения включает:

    PIN-фотодиод

    Регулируемый усилитель

    Полосовой фильтр

    Амплитудный детектор

    Интегрирующий фильтр

    Пороговое устройство


PIN-фотодиод – это разновидность фотодиода, у которого между областями n и p расположена область из собственного полупроводника (i-область ). Область собственного полупроводника – это по сути прослойка из чистого полупроводника без внесённых в него примесей. Именно этот слой и придаёт PIN-диоду его особенные свойства. К слову сказать, PIN-диоды (не фотодиоды) активно применяются в СВЧ электронике. Взгляните на свой мобильный телефон, в нём также используется PIN-диод.

Но, вернёмся к PIN-фотодиоду. В обычном состоянии ток через PIN-фотодиод не протекает, так как в схему он включен в обратном направлении (в так называемом обратном смещении). Так как под действием внешнего инфракрасного излучения в i-области возникают электронно-дырочные пары, то в результате через диод начинает протекать ток. Этот ток затем преобразуется в напряжение и поступает на регулируемый усилитель .

Далее сигнал с регулируемого усилителя поступает на полосовой фильтр . Он служит защитой от помех. Полосовой фильтр настроен на определённую частоту. Так в ИК-приёмниках в основном используются полосовые фильтры, настроенные на частоту 30; 33; 36; 36,7; 38; 40; 56 и 455 килогерц. Чтобы излучаемый пультом ДУ сигнал мог быть принят ИК-приёмником, он должен быть модулирован такой же частотой, на которую настроен полосовой фильтр ИК-приёмника. Вот так, например, выглядит модулированный сигнал от излучающего инфракрасного диода (см. рисунок).

А вот так выглядит сигнал на выходе ИК-приёмника.

Стоит отметить, что избирательность полосового фильтра невелика. Поэтому ИК-модуль с фильтром на 30 килогерц вполне может принимать сигнал частотой 36,7 килогерц и более. Правда, при этом расстояние уверенного приёма заметно снижается.

После того, как сигнал прошёл через полосовой фильтр, он поступает на амплитудный детектор и интегрирующий фильтр . Интегрирующий фильтр необходим для подавления коротких одиночных всплесков сигнала, которые могут быть вызваны помехами. Далее сигнал поступает на пороговое устройство , а затем на выходной транзистор .

Для устойчивой работы приёмника коэффициент усиления регулируемого усилителя контролируется системой автоматической регулировки усиления (АРУ ). Поскольку полезный сигнал представляет собой пачку импульсов определённой длительности, то из-за инерционности АРУ сигнал успевает пройти через тракт усиления и остальные узлы схемы.

В случае, когда длительность пачки импульсов чрезмерна система АРУ срабатывает, и приёмник перестаёт принимать сигнал. Такая ситуация может возникнуть, когда ИК-приёмник засвечен люминесцентной лампой с электронным балластом, который работает на частотах 30 – 50 килогерц. В таком случае промодулированное инфракрасное излучение паров ртути лампы может пройти защитный полосовой фильтр фотоприёмника и вызвать срабатывание АРУ. Естественно, при этом чувствительность ИК-приёмника падает.

Поэтому не стоит удивляться, когда фотоприёмник телевизора плохо принимает команды от пульта ДУ. Возможно, ему просто мешает засветка люминесцентных ламп.

Автоматическая регулировка порога (АРП ) выполняет аналогичную функцию, что и АРУ, управляя порогом срабатывания порогового устройства. АРП выставляет уровень порога срабатывания таким образом, чтобы уменьшить число ложных импульсов на выходе модуля. При отсутствии полезного сигнала число ложных импульсов может достигать 15-ти в минуту.

Форма корпуса ИК-модуля способствует фокусировке принимаемого излучения на чувствительную поверхность фотодиода. Материал же корпуса пропускает излучение с длиной волны от 830 до 1100 нм. Таким образом, в устройстве реализован оптический фильтр. Для защиты элементов приёмника от воздействия внешних электрических полей в модуле установлен электростатический экран. На фотографии показаны ИК-модули марки HS0038A2 и TSOP2236 . Для сравнения рядом показаны обычные ИК-фотодиоды КДФ-111В и ФД-265 .

ИК-приёмники

Как проверить исправность ИК-приёмника?

Поскольку приёмник ИК-сигналов является специализированной микросхемой, то для того, чтобы достоверно проверить её исправность необходимо подать на микросхему напряжение питания. Например, номинальное напряжение питания для «высоковольтных» ИК-модулей серии TSOP22 составляет 5 вольт. Потребляемый ток составляет единицы миллиампер (0,4 – 1,5 мА). При подключении питания к модулю стоит учитывать цоколёвку.

В состоянии, когда на приёмник не подаётся сигнал, а также в паузах между пачками импульсов напряжение на его выходе (без нагрузки) практически равно напряжению питания. Выходное напряжение между общим выводом (GND) и выводом выхода сигнала можно замерить с помощью цифрового мультиметра . Также можно замерить потребляемый модулем ток. Если ток потребления превышает типовой, то скорее всего модуль неисправен.

О том, как проверить исправность ИК-приёмника с помощью блока питания , мультиметра и пульта ДУ читайте .

Как видим, приёмники ИК-сигналов, используемые в системах дистанционного управления по инфракрасному каналу, имеют достаточно изощрённое устройство. Данные фотоприёмники часто используют в своих самодельных устройствах любители микроконтроллерной техники.

Инфракрасный пульт дистанционного управления — один из самых простых способов взаимодействия с электронными приборами. Так, практически в каждом доме есть несколько таких устройств: телевизор, музыкальный центр, видеоплеер, кондиционер. Но самое интересное применение инфракрасного пульта — дистанционное правление роботом. Собственно, на этом уроке мы попытаемся реализовать такой способ управления с помощью популярного контроллера Ардуино Уно.

1. ИК-пульт

Что нужно для того, чтобы научить робота слушаться инфракрасного (ИК) пульта? Во-первых, нам потребуется сам пульт. Можно использовать обычный пульт от телевизора, а можно приобрести миниатюрный пульт от автомагнитолы. Именно такие пульты часто используются для управления роботами. На таком пульте есть 10 цифровых кнопок и 11 кнопок для манипуляции с музыкой: громкость, перемотка, play, stop, и т.д. Для наших целей более чем достаточно.

2. ИК-датчик

Во-вторых, для приема сигнала с пульта нам потребуется специальный ИК-датчик. Вообще, мы можем детектировать инфракрасное излучение обычным фотодиодом/фототранзистором, но в отличие от него, наш ИК-датчик воспринимает инфракрасный сигнал только на частоте 38 кГц (иногда 40кГц). Именно такое свойство позволяет датчику игнорировать много посторонних световых шумов от ламп освещения и солнца. Для этого урока воспользуемся популярным ИК-датчиком VS1838B , который обладает следующими характеристиками:
  • несущая частота: 38 кГц;
  • напряжение питания: 2,7 — 5,5 В;
  • потребляемый ток: 50 мкА.
Можно использовать и другие датчики, например: TSOP4838, TSOP1736, SFH506.

3. Подключение

Датчик имеет три вывода (три ноги). Если посмотреть на датчик со стороны приёмника ИК сигнала, как показано на рисунке,
  • то слева будет - выход на контроллер,
  • по центру - отрицательный контакт питания (земля),
  • и справа - положительный контакт питания (2.7 — 5.5В).
Принципиальная схема подключения Внешний вид макета

4. Программа

Подключив ИК-датчик будем писать программу для Ардуино Уно. Для этого воспользуемся стандартной библиотекой IRremote , которая предназначена как раз для упрощения работы с приёмом и передачей ИК сигналов. С помощью этой библиотеки будем принимать команды с пульта, и для начала, просто выводить их в окно монитора последовательного порта. Эта программа нам пригодится для того, чтобы понять какой код дает каждая кнопка. #include "IRremote.h" IRrecv irrecv(2); // указываем вывод, к которому подключен приемник decode_results results; void setup() { Serial.begin(9600); // выставляем скорость COM порта irrecv.enableIRIn(); // запускаем прием } void loop() { if (irrecv.decode(&results)) { // если данные пришли Serial.println(results.value, HEX); // печатаем данные irrecv.resume(); // принимаем следующую команду } } Загружаем программу на Ардуино. После этого, пробуем получать команды с пульта. Открываем монитор последовательного порта (Ctrl+Shift+M), берём в руки пульт, и направляем его на датчик. Нажимая разные кнопочки, наблюдаем в окне монитора соответствующие этим кнопкам коды. Проблема с загрузкой программы В некоторых случаях, при попытке загрузить программу в контроллер, может появиться ошибка: TDK2 was not declared In his scope Чтобы ее исправить, достаточно удалить два файла из папки библиотеки. Заходим в проводник. Переходим в папку, где установлено приложение Arduino IDE (скорее всего это «C:\Program Files (x86)\Arduino»). Затем в папку с библиотекой: …\Arduino\libraries\RobotIRremote , и удаляем файлы: IRremoteTools.cpp и IRremoteTools.h. Затем, перезапускаем Arduino IDE, и снова пробуем загрузить программу на контроллер.

5. Управляем светодиодом с помощью ИК-пульта

Теперь, когда мы знаем, какие коды соответствуют кнопкам пульта, пробуем запрограммировать контроллер на зажигание и гашение светодиода при нажатии на кнопки громкости. Для этого нам потребуется коды (могут отличаться, в зависимости от пульта):
  • FFA857 — увеличение громкости;
  • FFE01F — уменьшение громкости.
В качестве светодиода, используем встроенный светодиод на выводе №13, так что схема подключения останется прежней. Итак, программа: #include "IRremote.h" IRrecv irrecv(2); // указываем вывод, к которому подключен приемник decode_results results; void setup() { irrecv.enableIRIn(); // запускаем прием } void loop() { if (irrecv.decode(&results)) { // если данные пришли switch (results.value) { case 0xFFA857: digitalWrite(13, HIGH); break; case 0xFFE01F: digitalWrite(13, LOW); break; } irrecv.resume(); // принимаем следующую команду } } Загружаем на Ардуино и тестируем. Жмем vol+ — светодиод зажигается. Жмем vol- — гаснет. Теперь, зная как это все работает, можно вместо светодиода управлять двигателями робота, или другими самодельными микроэлектронными устройствами!

схема из журнала "Юный Техник".

Интересное направление радиоэлектроники, которая дополнила эту электронику новыми преимуществами "невидимого" света (инфракрасный свет). Вот я и предлагаю схему простого (для примера) приемника и передатчика основанного на инфракрасных лучах. Основа: операционный усилитель к140уд7 (у меня тут уд708), излучающий и принамющие ИК-фотодиоды, УНЧ (к548ун1а(б,в - индексами)- на два канала)(правда куда второй канал усилителя "включите" решать вам - схема предатчика рассчитана на один канал, т.е. моно). Питание устройства: вообще рекомендую с приличной стабилизацией токов (а так "дендюшный" адаптер раздражает фоном "сети"). Способ: амплитудно-модулированный сигнал передатчика усиливается приемником в 1000 раз.

Как работает устройство. Предлагаю Вам просмотреть небольшой видеоролик тестирование ИК-пульта "на слух". Можно быстро проверить работоспособность и мощность сигнала по звуку.

Схема ИК-приемника и ИК-передатчика

При сборке конденсаторы С1 и С2 должны быть как можно ближе к усилителю! К выходу можно подключить высокоомные наушники (для низкоомных нужен отдельный УНЧ). Фотодиод ФД7 (у меня ФД263: "таблетка" с фокусирующей линзой); 0.125Вт резисторы: R1 с R4 задают коэффициент услиния сигнала в 1000 раз. Приемник налаживается просто: фотодиод направляется на источник ИК-излучения, например, лампу 220в-50Гц: нить накала будет фонит с частотой 50Гц или пульт ДУ от телевизора (видео и т.д.).Чувствителность приемника большая: нормально принимает сигналы отражённые от стен.

На передатчике ИК светодиоды АЛ107а: подойдёт любой. R2 2 кОм, С1 1000мкФх25в, С2 200мкФх25В, трансформатор тоже любой. Хотя вполне можно обойтись без трансфорсматора - подать усиленный аудиосигнал на конденсатор С2.

Схема устройств

Схема ИК приемника с УНЧ

Недавно по необходимости собрал ИК приемник для проверки ИК пультов (телевизоров и DVD). После доработки схемы - установил моно УНЧ TDA7056. Данный усилитель имеет хорошие харакетеристики усиления около 42 дБ; работает в диапазоне напряжении от 3В до 18В, что позволило ИК приемнику работать даже при напряжении 3В; диапазон усиления TDA от 20 Гц до 20кГц (УД708 проспукает до 800 кГц) вполне достаточно для использования приемника в качетсве аудио сопровождения; имеет защиту от короткого замыкания на всех "ножках"; защиту от "перегрева"; слабый коэффициент собственных помех. В целом мне понравился этот компактный и надежный УНЧ (у нас он стоит 90р.).
Есть к нему с подробным описанием. На рис.1 отображен пример использования усилителя.


Фото TDA7056


Рис.1. Схема усилителя с TDA7056

В итоге получился ИК приемник рис.2, который работает в диапазоне напряжении от 3В до 12В. Рекомендую применять для питания приемника батареи, либо аккумуляторы. При использованиии блока питания необходим стабилизированный источник, иначе будет слышен фон сети 50Гц, который усиливает УД708. Если устройство находится вблизи источника сетевого напряжения или радиоизлучения, то могут возникнуть наводки. Для уменьшения помех в схему необходимо включить конденсатор С5. TDA7056 рассчитан на выходной динамик в 16 Ом, к сожалению у меня такого нет. Пришлось использовать 4-омный динамик на 3 Вт, который был подключен через одноваттный резистор 50 Ом. Слишком низкое сопротивление катушки динамика вызывает избыток мощности и перегревает усилитель. В целом из-за дополнительного резистора УНЧ не греется, но обеспечивает вполне приемлемое усиление.

ИК-приемник представляет собой стандартное устройство, подключаемое к COM (RS-232) порту, и служащее для дистанционного управления роботом.

Одна из возможных схем ИК-приемника. Для ИК-приемника подойдет любой 5-вольтовый инфракрасный приемник, используемый в бытовой аппаратуре (телевизорах). Например: TSOP1836, IS1U60L, GP1U52X, SFH506-36 или наш отечественный TK1833. Стабилизатор напряжения КРЕН5А необходим для питания ИК-приемника 5 вольтовым напряжением, т.к. с 7го контакта COM-порта поступает напряжение 12 вольт. Резистор можно выбрать из диапазона 3-5 кОм, конденсатор 4.7-10 МкФ. Любой маломощный диод.

В приведенной схеме выходной сигнал подается на 1 контакт COM порта (DCD). Этот контакт не используется стандартной мышью для COM порта, поэтому если у Вас не хватает свободного COM порта, данную схему можно использовать параллельно с мышью (но не с модемом)! Выходной сигнал можно подавать не только на DCD, но и на другие контакты, например CTS или DSR. Все эти параметры можно выставить в программе, которая работает в ИК приемником. Вариантов программы несколько, наиболее распростанена программа WinLIRC. Также могу посоветовать использовать программу Girder.

Распиновка и внешний вид основных элементов схемы

Слева на право - две разновидности 5-ти вольтовых ИК-приемников, и микросхема стабилизатора напряжения КРЕН5А.

Распиновка COM-порта

Распиновка и описание контактов COM порта (25 pin).

ИК-приемник, играет не последнюю роль в нашей, повседневной жизни. С помощью данной микросхемы мы имеем возможность управлять современными благами бытовой техники, телевизором, музыкальным центром, автомагнитолой, кондиционером. Это позволяет нам делать, пульт дистанционного управления (ПДУ), рассмотрим подробнее, его работу, схему, назначение и проверку. В статье, ик-приемник как проверить самому.

Что такое ИК-приёмник и как он работает

Это интегральная микросхема, ее прямая и основная задача, принимать и обрабатывать инфракрасный сигнал, который как раз и выдаёт пульт дистанционного управления. С помощью этого сигнала и происходит управление техникой.

В основе этой микросхемы лежит pin фотодиод, особенный элемент, с p-n переходом и i областью между ними, аналог базы транзистора, как в бутерброде, вот вам и аббревиатура pin, в своём роде, уникальный элемент.

Он включён в обратном направлении и не пропускает электрический ток. Ик-сигнал поступает на i область, и он проводит ток, преобразовывая его в напряжение.


Следующие ступени, интегрирующий фильтр, амплитудный детектор и на финише их ждут выходные транзисторы.

Как правило покупать новый ик-приёмник в магазине, нет особого смысла, так как его свободно можно выпаять из различных электронных плат. Если вы собираете устройство для проверки ПДУ, из подручных материалов, не зная точной маркировки прибора, то цоколёвку можно определить самому.


Нам понадобится, мультиметр, блок питания или несколько батареек, соединительные провода, монтаж можно произвести навесной.

У него три вывода, один GND, на второй подаётся плюс 5 вольт, а с третьего выходит сигнал out. Подключаем питания соответственно первой и второй ноге, и снимем напряжение с третей.


Он находится в состоянии ожидания сигнала с пульта, и на мультиметре мы видим, пять вольт. Начинаем переключать каналы или нажимать на другие кнопки, направив пульт, на него.

Если он рабочий, то напряжение будет проседать, примерно на 0,5- 1 вольта. Если всё происходит, как написано здесь, по прибор рабочий, в противном случае, элемент не исправен.

Как определить цоколевку инфракрасного приёмника

Для примера я взял совершенно неизвестную мне микросхему, которая лежал в коробке с элементами, «минус», был определён, по точке, которая имеется на обратной стороне элемента, «плюс», опытным путём через резистор. Я ни чем, не рисковал, в то, что он изначально рабочий, надежды не было.

Для определения цоколёвки ик-приемника, если он впаян в плату, смотрите на ней, возможно, есть маркировка выводов. Если там ни чего не написано, осмотрите сам элемент, ищите его название, а затем в интернете поищите характеристики и данные, такое ведение дела, весьма грамотное. Следуя инструкции, ик-приемник как проверить самому.

схема из журнала "Юный Техник".

Интересное направление радиоэлектроники, которая дополнила эту электронику новыми преимуществами "невидимого" света (инфракрасный свет). Вот я и предлагаю схему простого (для примера) приемника и передатчика основанного на инфракрасных лучах. Основа: операционный усилитель к140уд7 (у меня тут уд708), излучающий и принамющие ИК-фотодиоды, УНЧ (к548ун1а(б,в - индексами)- на два канала)(правда куда второй канал усилителя "включите" решать вам - схема предатчика рассчитана на один канал, т.е. моно). Питание устройства: вообще рекомендую с приличной стабилизацией токов (а так "дендюшный" адаптер раздражает фоном "сети"). Способ: амплитудно-модулированный сигнал передатчика усиливается приемником в 1000 раз.

Как работает устройство. Предлагаю Вам просмотреть небольшой видеоролик тестирование ИК-пульта "на слух". Можно быстро проверить работоспособность и мощность сигнала по звуку.

Схема ИК-приемника и ИК-передатчика

При сборке конденсаторы С1 и С2 должны быть как можно ближе к усилителю! К выходу можно подключить высокоомные наушники (для низкоомных нужен отдельный УНЧ). Фотодиод ФД7(у меня ФД5.. какой-то: "таблетка" такая с фокусирующей линзой - не помню точно наименование); 0.125Вт резисторы: R1 с R4 задают коэффициент услиния сигнала в 1000 раз. Приемник налаживается просто: фотодиод направляется на источник ИК-излучения, например, лампу 220в-50Гц: нить накала будет фонит с частотой 50Гц или пульт ДУ от телевизора (видео и т.д.).Чувствителность приемника большая: нормально принимает сигналы отражённые от стен.

На передатчике ИК светодиоды АЛ107а: подойдёт любой. R2 2 кОм, С1 1000мкФх25в, С2 200мкФх25В, трансформатор тоже любой. Хотя вполне можно обойтись без трансфорсматора - подать усиленный аудиосигнал на конденсатор С2.

Схема устройств

Недавно по необходимости собрал ИК приемник для проверки ИК пультов (телевизоров и DVD). После доработки схемы - установил моно УНЧ TDA7056. Данный усилитель имеет хорошие харакетеристики усиления около 42 дБ; работает в диапазоне напряжении от 3В до 18В, что позволило ИК приемнику работать даже при напряжении 3В; диапазон усиления TDA от 20 Гц до 20кГц (УД708 проспукает до 800 кГц) вполне достаточно для использования приемника в качетсве аудио сопровождения; имеет защиту от короткого замыкания на всех "ножках"; защиту от "перегрева"; слабый коэффициент собственных помех. В целом мне понравился этот компактный и надежный УНЧ (у нас он стоит 90р.).
Есть к нему с . На рис.1 отображен пример использования усилителя.


Фото TDA7056



Рис.1. Схема усилителя с TDA7056

В итоге получился ИК приемник рис.2, который работает в диапазоне напряжении от 3В до 12В. Рекомендую применять для питания приемника батареи, либо аккумуляторы. При использованиии блока питания необходим стабилизированный источник, иначе будет слышен фон сети 50Гц, который усиливает УД708. Если устройство находится вблизи источника сетевого напряжения или радиоизлучения, то могут возникнуть наводки. Для уменьшения помех в схему необходимо включить конденсатор С5. TDA7056 рассчитан на выходной динамик в 16 Ом, к сожалению у меня такого нет. Пришлось использовать 4-омный динамик на 3 Вт, который был подключен через одноваттный резистор 50 Ом. Слишком низкое сопротивление катушки динамика вызывает избыток мощности и перегревает усилитель. В целом из-за дополнительного резистора УНЧ не греется, но обеспечивает вполне приемлемое усиление.



Рис.2. Схема ИК приемника с УНЧ



Фото ИК приемника

Рассмотрим на этом занятии подключение ИК приемника к Ардуино. Расскажем какую библиотеку следует использовать для IR приемника, продемонстрируем скетч для тестирования работы инфракрасного приемника от пульта дистанционного управления и разберем команды в языке C++ для получения управляющего сигнала.

Устройство ИК приемника. Принцип работы

Приемники инфракрасного излучения получили широкое применение в электронной технике, благодаря своей доступной цене , простоте и удобству в использовании. Эти устройства позволяют управлять приборами с помощью пульта дистанционного управления и их можно встретить практически в любом виде техники.

Принцип работы IR ресивера. Обработка сигнала от пульта ДУ

ИК-приемник на Ардуино способен принимать и обрабатывать инфракрасный сигнал, в виде импульсов заданной длительности и частоты. Обычно ИК-приемник имеет три ножки и состоит из следующих элементов: PIN-фотодиод, усилитель, полосовой фильтр, амплитудный детектор, интегрирующий фильтр и выходной транзистор.

Под действием инфракрасного излучения в фотодиоде, у которого между p и n областями создана дополнительная область из полупроводника (i -область), начинает течь ток. Сигнал поступает на усилитель и далее на полосовой фильтр, защищающий приемник от помех. Помехи могут создавать любые бытовые приборы.

Полосовой фильтр настроен на фиксированную частоту: 30; 33; 36; 38; 40 и 56 килогерц. Чтобы сигнал от пульта ДУ принимался ИК приемником Ардуино, пульт должен быть с той же частотой, на которую настроен фильтр в IR приемнике. После фильтра сигнал поступает на амплитудный детектор, интегрирующий фильтр и выходной транзистор.

Как подключить ИК приемник к Ардуино

Корпуса инфракрасных приемников содержат оптический фильтр для защиты прибора от внешних электромагнитных полей, изготавливаются они специальной формы для фокусировки принимаемого излучения на фотодиоде. Для подключения IR приемника к Arduino UNO используют три ножки, которые соединяют с портами - GND, 5V и A0.

Для занятия нам понадобятся следующие детали:

  • Плата Arduino Uno;
  • Макетная плата;
  • USB-кабель;
  • IR приемник;
  • Пульт ДУ;
  • 1 светодиод;
  • 1 резистор 220 Ом;
  • Провода «папка-папка» и «папка-мамка».

Схема подключения ИК приемника к аналоговому порту Ардуино

Подключите IR приемник по схеме и светодиоды к 12 и 13 пину и загрузите скетч.

#include // подключаем библиотеку для IR приемника IRrecv irrecv(A0); // указываем пин, к которому подключен IR приемник decode_results results; void setup () // процедура setup { irrecv.enableIRIn (); // запускаем прием инфракрасного сигнала pinMode (13, OUTPUT); // пин 13 будет выходом (англ. «output») pinMode (12, OUTPUT); // пин 12 будет выходом (англ. «output») pinMode (A0, INPUT); // пин A0 будет входом (англ. «intput») Serial .begin (9600); // подключаем монитор порта } void loop () // процедура loop { if (irrecv.decode (&results)) // если данные пришли выполняем команды { Serial .println (results.value); // отправляем полученные данные на порт // включаем и выключаем светодиоды, в зависимости от полученного сигнала if (results.value == 16754775) { digitalWrite (13, HIGH); } if (results.value == 16769055) { digitalWrite (13, LOW); } if (results.value == 16718055) { digitalWrite (12, HIGH); } if (results.value == 16724175) { digitalWrite (12, LOW); } irrecv.resume (); // принимаем следующий сигнал на ИК приемнике } }

Пояснения к коду:

  1. Библиотека IRremote.h содержит набор команд и позволяет упростить скетч;
  2. Оператор decode_results присваивает получаемым сигналам от пульта дистанционного управления имя переменной results .

На что обратить внимание:

  1. Чтобы можно было управлять включением светодиода необходимо включить монитор порта и узнать какой сигнал отправляет та или иная кнопка на пульте ДУ;
  2. Полученные данные следует внести в скетч. Измените восьмизначный код в скетче после знака двойного равенства if (results.value == 16769055) на свой.

ИК-приемник устройство, работа и проверка

В телевизионной, бытовой, медицинской техники и другой аппаратуре широкое распространение получили ИК-приемники инфракрасного излучения. Их можно увидеть почти в любом виде электронной техники, управляют ими с помощью пульта дистанционного управления.


работа и структурная схема ИК приемника

Обычно, микросборка ИК-приемника имеет от трех выводов. Один является общим и подсоединяется к минусу питания GND , другой к плюсу V s , а третий является выходом принимаемого сигнала Out .

В отличие от стандартного ИК фотодиода, ИК-приемник способен не только принимать, но еще и обрабатывать инфракрасный сигнал, в виде импульсов фиксированной частоты и заданной длительности. Это защищает устройство от ложных срабатываний, от фонового излучения и помехам со стороны других бытовых приборов, излучающих в ИК диапазоне. Достаточно сильные помехи для приемника могут создавать люминесцентные энергосберегающие лампы со схемой электронного балласта.

Микросборка типичного ИК-приемника излучения включает: PIN-фотодиод, регулируемый усилитель, полосовой фильтр, амплитудный детектор, интегрирующий фильтр, пороговое устройство, выходной транзистор

PIN-фотодиод из семейства фотодиодов, у которого между областями n и p создана еще одна область из собственного полупроводника (i-область) – это по сути прослойка из чистого полупроводника без примесей. Именно она придаёт PIN-диоду его особенные свойства. В нормальном состоянии ток через PIN-фотодиод не идет, так как в схему он подсоединен в обратном направлении. Когда под действием внешнего ИК излучения в i-области генерируются электронно-дырочные пары, то через диод начинает течь ток. Который потом идет на регулируемый усилитель.

Затем сигнал с усилителя следует на полосовой фильтр, защищающий от помех в ИК диапазоне. Полосовой фильтр настроен на строго фиксированную частоту. Обычно применяются фильтры, настроенные на частоту 30; 33; 36; 36,7; 38; 40; 56 и 455 килогерц. Для того, чтобы излучаемый ПДУ сигнал принимался ИК -приемником, он должен быть модулирован той же частотой, на которую настроен фильтр.

После фильтра сигнал поступает на амплитудный детектор и интегрирующий фильтр. Последний необходим для блокирования коротких одиночных всплесков сигнала, могущих появиться от помехам. Далее сигнал идет на пороговое устройство и выходной транзистор. Для устойчивой работы коэффициент усиления усилителя настраивается системой автоматической регулировки усиления (АРУ).

Корпуса ИК-модулей изготавливаются специальной формы способствующей фокусировке принимаемого излучения на чувствительную поверхность фотоэлемента. Материал корпуса пропускает излучение с строго определенной длиной волны от 830 до 1100 нм. Таким образом, в устройстве задействован оптический фильтр. Для защиты внутренних элементов от воздействия внешних эл. полей используется электростатический экран.

Проверка ИК-Приемника

Так как приемник ИК-сигналов является специализированной микросборкой, то для того, чтобы убедиться в ее работоспособности требуется подать на микросхему напряжение питания, обычно это 5 вольт. Потребляемый ток при этом будет около 0,4 – 1,5 мА.

Если на приемник не поступает сигнал, то в паузах между пачками импульсов напряжение на его выходе практически соответствует напряжению питания. Его между GND и выводом выхода сигнала можно измерить с помощью любого цифрового мультиметра. Также рекомендуется замерить потребляемый микросхемой ток. Если он превышает типовой (см. справочник), то скорее всего микросхема дефектная.

Итак, перед началом теста модуля обязательно определяем цоколевку его выводов. Обычно эту информацию легко найти, в нашем мегасправочнике даташитов по электронике. Скачать его вы можете кликнув на рисунок справа.

Проведем проверку на микросхеме TSOP31236 ее распиновка соответствует рисунку выше. Плюсовой вывод от самодельного блока питания подключаем к плюсовому выводу ИК-модуля (Vs), минус – к выводу GND. А третий вывод OUT подсоединяем к плюсовому щупу мультиметра. Минусовой щуп подсоединяем к общему проводу GND. Мультиметр переключаем в режим напряжения DC на 20 V.

Как только на фотодиод ИК-микросборки начнут поступать пачки инфракрасных импульсов от, то напряжение на его выходе будет падат на несколько сотен милливольт. При этом будет хорошо заметно, как на экране мультиметра значение снизиться с 5,03 вольт до 4,57. Если отпустим кнопку ПДУ, то на экране вновь отобразиться 5 вольт.

Как видим, приемник ИК излучения правильно реагирует на сигнал с пульта. Значит модуль исправен. Аналогичным образом можно проверить любые модули в интегральном исполнении.